Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 51(1): 27-41, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30540547

ABSTRACT

Although cystic fibrosis (CF) is attributed to dysfunction of a single gene, the relationships between the abnormal gene product and the development of inflammation and progression of lung disease are not fully understood, which limits our ability to predict an individual patient's clinical course and treatment response. To better understand CF progression, we characterized the molecular signatures of CF disease status with plasma-based functional genomics. Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured with plasma samples from CF patients ( n = 103) and unrelated, healthy controls ( n = 31). Gene expression levels were measured with an Affymetrix microarray (GeneChip Human Genome U133 Plus 2.0). Peripheral blood samples from a subset of the CF patients ( n = 40) were immunophenotyped by flow cytometry, and the data were compared with historical data for age-matched healthy controls ( n = 351). Plasma samples from another subset of CF patients ( n = 56) and healthy controls ( n = 16) were analyzed by multiplex enzyme-linked immunosorbent assay (ELISA) for numerous cytokines and chemokines. Principal component analysis and hierarchical clustering of induced transcriptional data revealed disease-specific plasma-induced PBMC profiles. Among 1,094 differentially expressed probe sets, 51 genes were associated with pancreatic sufficient status, and 224 genes were associated with infection with Pseudomonas aeruginosa. The flow cytometry and ELISA data confirmed that various immune modulators are relevant contributors to the CF molecular signature. This study provides strong evidence for distinct molecular signatures among CF patients. An understanding of these molecular signatures may lead to unique molecular markers that will enable more personalized prognoses, individualized treatment plans, and rapid monitoring of treatment response.


Subject(s)
Cystic Fibrosis/blood , Cystic Fibrosis/genetics , Plasma/metabolism , Transcriptome/genetics , Adolescent , Adult , Blood Donors , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cytokines/blood , Female , Genotype , Humans , Immunophenotyping , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mutation , Neutrophils/metabolism , Oligonucleotide Array Sequence Analysis , Reactive Oxygen Species/metabolism , Young Adult
2.
Pediatr Pulmonol ; 44(6): 580-93, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19431193

ABSTRACT

RATIONALE: Variability in pulmonary disease severity is found in patients with cystic fibrosis (CF) who have identical mutations in the CF transmembrane conductance regulator (CFTR) gene. We hypothesized that one factor accounting for heterogeneity in pulmonary disease severity is variation in the family of genes affecting the biology of interleukin-1 (IL-1), which impacts acquisition and maintenance of Pseudomonas aeruginosa infection in animal models of chronic infection. METHODS: We genotyped 58 single nucleotide polymorphisms (SNPs) in the IL-1 gene cluster in 808 CF subjects from the University of North Carolina and Case Western Reserve University (UNC/CWRU) joint cohort. All were homozygous for DeltaF508, and categories of "severe" (cases) or "mild" (control subjects) lung disease were defined by the lowest or highest quartile of forced expired volume (FEV(1)) for age in the CF population. After adjustment for age and gender, genotypic data were tested for association with lung disease severity. Odds ratios (ORs) comparing severe versus mild CF were also calculated for each genotype (with the homozygote major allele as the reference group) for all 58 SNPs. From these analyses, nine SNPs with a moderate effect size, OR < or =0.5 or >1.5, were selected for further testing. To replicate the case-control study results, we genotyped the same nine SNPs in a second population of CF parent-offspring trios (recruited from Children's Hospital Boston), in which the offspring had similar pulmonary phenotypes. For the trio analysis, both family-based and population-based associations were performed. RESULTS: SNPs rs1143634 and rs1143639 in the IL1B gene demonstrated a consistent association with lung disease severity categories (P < 0.10) and longitudinal analysis of lung disease severity (P < 0.10) in CF in both the case-control and family-based studies. In females, there was a consistent association (false discovery rate adjusted joint P-value <0.06 for both SNPs) in both the analysis of lung disease severity in the UNC/CWRU cohort and the family-based analysis of affection status. CONCLUSION: Our findings suggest that IL1beta is a clinically relevant modulator of CF lung disease.


Subject(s)
Cystic Fibrosis/genetics , Interleukin-1/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , Case-Control Studies , Child , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Genotype , Humans , Male , Middle Aged , Odds Ratio , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...