Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 135: 83-90, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27417577

ABSTRACT

Spatial working memory (SWM) is an essential cognitive function important for survival in a competitive environment. In rodents SWM requires an intact hippocampus and SWM expression is impaired in mice lacking the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 (Gria1-/- mice). Here we used viral gene transfer to show that re-expression of GluA1 in the hippocampus can affect the behavioral performance of GluA1 deficient mice. We found that Gria1-/- mice with hippocampus-specific rescue of GluA1 expression (Gria1Hpc mice) are more anxious, less hyperactive and only partly impaired in SWM expression in the Y-maze spatial novelty preference paradigm compared to Gria1-/- mice. However, Gria1Hpc mice still express SWM performance deficits when tested in the rewarded alternation T-maze task. Thus, the restoration of hippocampal function affects several behaviors of GluA1 deficient mice - including SWM expression - in different tasks. The virus-mediated GluA1 expression in Gria1-/- mice is not sufficient for a comprehensive SWM restoration, suggesting that both hippocampal as well as extra-hippocampal GluA1-containing AMPA receptors contribute to SWM.


Subject(s)
Hippocampus/metabolism , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory, Short-Term/physiology , Receptors, AMPA/metabolism , Spatial Memory/physiology , Animals , Behavior, Animal/physiology , Gene Transfer Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptors, AMPA/deficiency
2.
J Neurosci ; 34(18): 6245-59, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24790195

ABSTRACT

The hippocampus and the parahippocampal region have been proposed to contribute to path integration. Mice lacking GluA1-containing AMPA receptors (GluA1(-/-) mice) were previously shown to exhibit impaired hippocampal place cell selectivity. Here we investigated whether path integration performance and the activity of grid cells of the medial entorhinal cortex (MEC) are affected in these mice. We first tested GluA1(-/-) mice on a standard food-carrying homing task and found that they were impaired in processing idiothetic cues. To corroborate these findings, we developed an L-maze task that is less complex and is performed entirely in darkness, thereby reducing numerous confounding variables when testing path integration. Also in this task, the performance of GluA1(-/-) mice was impaired. Next, we performed in vivo recordings in the MEC of GluA1(-/-) mice. MEC neurons exhibited altered grid cell spatial periodicity and reduced spatial selectivity, whereas head direction tuning and speed modulation were not affected. The firing associations between pairs of neurons in GluA1(-/-) mice were stable, both in time and space, indicating that attractor states were still present despite the lack of grid periodicity. Together, these results support the hypothesis that spatial representations in the hippocampal-entorhinal network contribute to path integration.


Subject(s)
Entorhinal Cortex/cytology , Homing Behavior/physiology , Neurons/physiology , Periodicity , Receptors, AMPA/deficiency , Spatial Behavior/physiology , Acoustic Stimulation , Action Potentials/genetics , Animals , Brain Mapping , Cluster Analysis , Male , Maze Learning/physiology , Mice , Mice, Transgenic , Models, Neurological , Neural Pathways/physiology , Receptors, AMPA/genetics , Space Perception/physiology , Theta Rhythm , Time Factors
3.
J Neurosci ; 32(26): 8952-68, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22745495

ABSTRACT

The GluA1 subunit of AMPA receptors (AMPARs) is critical for hippocampal synaptic transmission and plasticity. Here, we measured the activity of single units from the CA1 region of the hippocampus while GluA1 knock-out (GluA1⁻/⁻) and wild-type (WT) mice traversed a linear track. Although overall firing rates were similar, GluA1⁻/⁻ neurons were more likely to spike in bursts, but at lower burst frequencies, compared with WT neurons. GluA1⁻/⁻ neurons showed large reductions in all measures of spatial and directional selectivity compared with WT neurons. Consistent with these alterations of single-neuron properties, the accuracy of the population code for position was substantially reduced in GluA1⁻/⁻, yet it is predicted to approach the accuracy of WT with increasing population size. The absolute representation of space, independent of movement direction, was greatly diminished in GluA1⁻/⁻ mice and is predicted to remain reduced even for larger populations. Finally, we found that the rate maps of GluA1⁻/⁻ neurons showed increased trial-by-trial variability but reduced experiential plasticity compared with the WT. These results reveal the critical contribution of GluA1-containing AMPARs to individual place cells and the hippocampal population code for space, which could explain the selective behavioral impairments observed in these mice.


Subject(s)
Action Potentials/genetics , Hippocampus/cytology , Movement/physiology , Neurons/physiology , Receptors, AMPA/deficiency , Spatial Behavior/physiology , Action Potentials/physiology , Animals , Brain Mapping , Electrodes, Implanted , Mice , Mice, Inbred C57BL , Mice, Knockout , Reward , Space Perception
4.
PLoS One ; 6(6): e21408, 2011.
Article in English | MEDLINE | ID: mdl-21731735

ABSTRACT

Cortical and hippocampal gamma oscillations have been implicated in many behavioral tasks. The hippocampus is required for spatial navigation where animals run at varying speeds. Hence we tested the hypothesis that the gamma rhythm could encode the running speed of mice. We found that the amplitude of slow (20-45 Hz) and fast (45-120 Hz) gamma rhythms in the hippocampal local field potential (LFP) increased with running speed. The speed-dependence of gamma amplitude was restricted to a narrow range of theta phases where gamma amplitude was maximal, called the preferred theta phase of gamma. The preferred phase of slow gamma precessed to lower values with increasing running speed. While maximal fast and slow gamma occurred at coincident phases of theta at low speeds, they became progressively more theta-phase separated with increasing speed. These results demonstrate a novel influence of speed on the amplitude and timing of the hippocampal gamma rhythm which could contribute to learning of temporal sequences and navigation.


Subject(s)
Brain Waves/physiology , Hippocampus/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Running/physiology , Theta Rhythm/physiology , Time Factors
5.
Front Neurosci ; 1(1): 97-110, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18982121

ABSTRACT

Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG) Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1a-mediated "uncoupling" for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet) controlled expression of Venus-tagged Homer1a (H1aV) in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP), which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP). These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.

SELECTION OF CITATIONS
SEARCH DETAIL
...