Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 54(31): F42-9, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26560621

ABSTRACT

This paper investigates the extent to which atmospheric turbulence can be exploited as a random bit generator. Atmospheric turbulence is considered an inherently random process due to the complex inhomogeneous system composition and its sensitivity to changes in pressure, temperature, humidity, and wind conditions. A self-calibrating Mach-Zehnder interferometer was used to collect phase fluctuations in the temporal domain introduced to an optical beam propagating through the atmosphere. The recorded phase fluctuations were converted into bit streams that were further analyzed in order to search for evidence of randomness. Empirical data and results that characterize the degree of randomness produced in the temporal phase component of an optical wave propagating through the atmosphere are presented.

2.
J Opt Soc Am A Opt Image Sci Vis ; 31(8): 1842-6, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25121541

ABSTRACT

We report a full design process-finite element modeling, fabrication, and characterization-of adaptive doublet polymer lenses. A first-order model was developed and used to design fluidic doublets, analogous to their glass counterparts. Two constant-volume fluidic chambers were enclosed by three flexible membranes, resulting in a variable focal length doublet with a clear aperture of 19.0 mm. Chromatic focal shift was then used to compare numerical modeling to experimentally measured results over a positive focal length range of 55-200 mm (f/2.89 to f/10.5).

3.
Appl Opt ; 50(17): 2692-8, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21673773

ABSTRACT

Using a 15.9 m baseline at the Navy Prototype Optical Interferometer (NPOI), we have successfully detected interferometric fringes in observations of the geosynchronous satellite (geosat) DirecTV-9S while it glinted on two nights in March 2009. The fringe visibilities can be fitted by a model consisting of two components, one resolved (≳3.7 m) and one unresolved (∼1.1 m). Both the length of the glint and the specular albedos are consistent with the notion that the glinting surfaces are not completely flat and scatter reflected sunlight into an opening angle of roughly 15°. Enhancements to the NPOI that would improve geosat observations include adding an infrared capability, which could extend the glint season, and adding larger, adaptive-optics equipped telescopes. Future work may test the feasibility of observing geosats with aperture-masked large telescopes and of developing an array of six to nine elements.

4.
J Opt Soc Am A Opt Image Sci Vis ; 28(3): 483-8, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21383832

ABSTRACT

A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

5.
Opt Lett ; 31(6): 679-81, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16544588

ABSTRACT

A deformable mirror mounted on a two-axis tilt platform can provide wavefront compensation at a single location in an adaptive optics system, resulting in a significant reduction in the number of optical components in the system and in a simplification of the alignment. However, the moment of inertia of a deformable mirror is significantly different from that of the monolithic mirror commonly mounted on a tilt platform. We report on what are to our knowledge the first experimental results of mounting a microelectromechanical deformable mirror onto a fast steering platform and the first observation that at low operating frequencies high-order deformation of the deformable mirror membrane was not recorded.

6.
Opt Lett ; 29(23): 2707-9, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15605479

ABSTRACT

Phase diversity is a phase-retrieval algorithm that uses a pair of intensity images taken symmetrically about the wave front to be determined. If these images are taken about the system input pupil this is equivalent to a curvature-sensing algorithm. Traditionally a defocus aberration kernel is used to produce the phase-diverse data. We present a generalization of this method to allow the use of other functions as the diversity kernel. We discuss the necessary and sufficient conditions that such a function must satisfy for use in a null wave-front sensor. Computer simulations were used to validate these results.

7.
Opt Express ; 10(1): 60-5, 2002 Jan 14.
Article in English | MEDLINE | ID: mdl-19424331

ABSTRACT

A wide field-of-view (FOV), theoretically diffraction-limited imaging system is demonstrated using a single positive lens (a singlet), a reflective liquid crystal spatial light modulator (SLM), a turning mirror and a CCD camera. The SLM is used to correct the off-axis aberrations that would otherwise limit the useful FOV of our system. Foveated imaging refers to the variation in spatial resolution across the image caused by using the SLM in this manner.

8.
Opt Express ; 10(1): 65-9, 2002 Jan 14.
Article in English | MEDLINE | ID: mdl-19424332

ABSTRACT

High-resolution imaging can be dramatically improved by combining a fast image stabilization system and variable aperture masking. We describe an imaging system that provides high-resolution images through an annular aperture using the unwanted low spatial frequency light for image stabilization. The annulus thickness and diameter can be selected to enhance the contribution of different spatial frequencies in the image at the expense of image exposure time.

9.
Opt Express ; 10(25): 1508-19, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-19461686

ABSTRACT

We present here results using two novel adaptive optic elements, an electro-static membrane mirror, and a dual frequency nematic liquid crystal. These devices have the advantage of low cost, low power consumption, and compact size. Possible applications of the devices are astronomical adaptive optics, laser beam control, laser cavity mode control, and real time holography. Field experiments were performed on the Air Force Research Laboratory, Directed Energy Directorate's 3.67 meter AMOS telescope on Maui, Hawaii.

SELECTION OF CITATIONS
SEARCH DETAIL
...