Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 319(3): H705-H721, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32762560

ABSTRACT

Myeloperoxidase (MPO)-derived hypochlorous (HOCl) reacts with membrane plasmalogens to yield α-chlorofatty aldehydes such as 2-chlorofatty aldehyde (2-ClFALD) and its metabolite 2-chlorofatty acid (2-ClFA). Recent studies showed that 2-ClFALD and 2-ClFA serve as mediators of the inflammatory responses to sepsis by as yet unknown mechanisms. Since no scavenger for chlorinated lipids is available and on the basis of the well-established role of the MPO/HOCl/chlorinated lipid axis in inflammatory responses, we hypothesized that treatment with MPO inhibitors (N-acetyl lysyltyrosylcysteine amide or 4-aminobenzoic acid hydrazide) would inhibit inflammation and proinflammatory mediator expression induced by cecal ligation and puncture (CLP). We used intravital microscopy to quantify in vivo inflammatory responses in Sham and CLP rats with or without MPO inhibition. Small intestines, mesenteries, and lungs were collected to assess changes in MPO-positive staining and lung injury, respectively, as well as free 2-ClFA and proinflammatory mediators levels. CLP caused neutrophil infiltration, 2-ClFA generation, acute lung injury, leukocyte-/platelet-endothelium interactions, mast cell activation (MCA), plasminogen activator inhibitor-1 (PAI-1) production, and the expression of several cytokines, chemokines, and vascular endothelial growth factor, changes that were reduced by MPO inhibition. Pretreatment with a PAI-1 inhibitor or MC stabilizer prevented CLP-induced leukocyte-endothelium interactions and MCA, and abrogated exogenous 2-ClFALD-induced inflammatory responses. Thus, we provide evidence that MPO instigates these inflammatory changes in CLP and that chlorinated lipids may serve as a mechanistic link between the enzymatic activity of MPO and PAI-1- and mast cell-dependent adhesive interactions, providing a rationale for new therapeutic interventions in sepsis.NEW & NOTEWORTHY Using two distinct myeloperoxidase (MPO) inhibitors, we show for the first time that MPO plays an important role in producing increases in free 2-chlorofatty aldehyde (2-ClFALD)-a powerful proinflammatory chlorinated lipid in plasma and intestine-a number of cytokines and other inflammatory mediators, leukocyte and platelet rolling and adhesion in postcapillary venules, and lung injury in a cecal ligation and puncture model of sepsis. In addition, the use of a plasminogen activator inhibitor-1 (PAI-1) inhibitor or a mast cell stabilizer prevented inflammatory responses in CLP-induced sepsis. PAI-1 inhibition also prevented the proinflammatory responses to exogenous 2-ClFALD superfusion. Thus, our study provides some of the first evidence that MPO-derived free 2-ClFA plays an important role in CLP-induced sepsis by a PAI-1- and mast cell-dependent mechanism.


Subject(s)
Cecum/microbiology , Fatty Acids/metabolism , Hypochlorous Acid/metabolism , Inflammation Mediators/metabolism , Inflammation/enzymology , Peroxidase/metabolism , Sepsis/enzymology , Aldehydes/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cecum/surgery , Cytokines/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Inflammation/immunology , Inflammation/microbiology , Inflammation/prevention & control , Inflammation Mediators/antagonists & inhibitors , Intestine, Small/enzymology , Intestine, Small/immunology , Ligation , Lung/enzymology , Lung/immunology , Mast Cells/enzymology , Mast Cells/immunology , Mesentery/enzymology , Mesentery/immunology , Peroxidase/antagonists & inhibitors , Plasminogen Activator Inhibitor 1/metabolism , Punctures , Rats, Sprague-Dawley , Sepsis/immunology , Sepsis/microbiology , Sepsis/prevention & control , Signal Transduction
2.
Alcohol ; 60: 77-82, 2017 05.
Article in English | MEDLINE | ID: mdl-28433418

ABSTRACT

The human PNPLA3 (patatin-like phospholipase domain-containing 3) gene codes for a protein which is highly expressed in adipose tissue and liver, and is implicated in lipid homeostasis. While PNPLA3 protein contains regions homologous to functional lipolytic proteins, the regulation of its tissue expression is reflective of lipogenic genes. A naturally occurring genetic variant of PNPLA3 in humans has been linked to increased susceptibility to alcoholic liver disease. We have examined the modulatory effect of alcohol on PNPLA3 protein and mRNA expression as well as the association of its gene promoter with acetylated histone H3K9 by chromatin immunoprecipitation (ChIP) assay in rat hepatocytes in vitro, and in vivo in mouse and rat models of acute binge, chronic, and chronic followed by acute binge ethanol administration. Protein expression of PNPLA3 was significantly increased by alcohol in all three models used. PNPLA3 mRNA also increased, albeit to a varying degree. ChIP assay using H3AcK9 antibody showed increased association with the promoter of PNPLA3 in hepatocytes and in mouse liver. This was less evident in rat livers in vivo except under chronic treatment. It is concluded for the first time that histone acetylation plays a role in the modulation of PNPLA3 levels in the liver exposed to binge ethanol both in vitro and in vivo.


Subject(s)
Binge Drinking/genetics , Epigenesis, Genetic/drug effects , Ethanol/toxicity , Histones/metabolism , Liver/drug effects , Membrane Proteins/genetics , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2/genetics , Acetylation , Animals , Binge Drinking/enzymology , Binge Drinking/pathology , Cells, Cultured , Disease Models, Animal , Enzyme Induction , Liver/enzymology , Liver/pathology , Male , Membrane Proteins/biosynthesis , Mice, Inbred C57BL , Phospholipases A2/biosynthesis , Phospholipases A2, Calcium-Independent/biosynthesis , Promoter Regions, Genetic , Protein Processing, Post-Translational , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats, Sprague-Dawley
3.
Hepatol Int ; 8 Suppl 2: 421-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-26201320

ABSTRACT

PURPOSE: Ethanol binge augments liver injury after chronic ethanol consumption in humans, but the mechanism behind the enhanced liver injury by ethanol binge is not known. In this study we used a clinically relevant rat model in which liver injury is amplified by binge after chronic ethanol treatment and investigated the importance of histone modifications. METHODS: Eight-week-old Sprague-Dawley rats were fed ethanol in a liquid diet for 4 weeks. Control rats were fed an isocaloric liquid diet. This was followed by three binge administrations of ethanol (intragastric 5 g/kg body weight, 12 h apart). In the control, ethanol was replaced by water. Four hours after the last binge administration, liver samples were analyzed for histone modifications and parameters of liver injury. RESULTS: Chronic ethanol administration alone caused an increase in histone H3 ser10 and ser28 (H3S10 or S28) phosphorylation, and binge ethanol reduced their levels. Levels of dually modified phosphoacetylated histone H3 (H3AcK9/PS10) increased after acute binge ethanol and remained same after chronic ethanol binge. In contrast, histone H3 lysine-9 acetylation (H3AcK9) was not increased after chronic ethanol but increased significantly after acute binge and chronic ethanol binge. Increase in histone acetylation was accompanied by increased phospho-ERK1/2 in the nuclear extracts. Increased acetylation after chronic ethanol binge was also accompanied by increased protein levels of GCN5 histone acetyl transferase and a modest increase in HDAC3 in the nucleus. Histone lysine-9 dimethylation was significantly increased after chronic ethanol binge. Chronic ethanol binge also resulted in a decrease in the SAM:SAH ratio with a relative decrease of SAM levels and a corresponding increase in SAH levels. CONCLUSIONS: Ethanol binge after chronic ethanol altered the profile of site-specific histone modifications and may underlie the mechanism of augmented liver injury by chronic-ethanol-binge-treated rats.

5.
Proteome Sci ; 10(1): 29, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22545783

ABSTRACT

BACKGROUND: Binge ethanol in rats after chronic ethanol exposure augments necrosis and steatosis in the liver. In this study, two-dimensional gel electrophoresis proteomic profiles of liver of control, chronic ethanol, control-binge, and chronic ethanol- binge were compared. RESULTS: The proteomic analysis identified changes in protein abundance among the groups. The levels of carbonic anhydrase 3 (CA3) were decreased after chronic ethanol and decreased further after chronic ethanol-binge. Ethanol binge alone in control rats had no effect on this protein suggesting its possible role in increased susceptibility to injury by binge after chonic ethanol treatment. A protein spot, in which both cytosolic isocitrate dehydrogenase (IDH1) and glutamine synthetase (GS) were identified, showed a small decrease after chronic ethanol binge but western blot demonstrated significant decrease only for glutamine synthetase in chronic ethanol treated rats. The level of gluathione S-transferase mu isoform (GSTM1) increased after chronic ethanol but was lower after chronic ethanol-binge compared to chronic ethanol treatment. The protein levels of the basic form of protein disulfide isomerase associated protein 3 (PDIA3) were significantly decreased and the acidic forms were increased after chronic ethanol- binge but not in chronic ethanol treated rats or ethanol binge in control rats. The significant changes in proteome profile in chronic ethanol binge were accompanied by a marked increase in liver injury as evidenced by enhanced steatosis, necrosis, increased 4-hydroxynonenal labeled proteins, CYP2E1 expression, and decreased histone H2AX phosphorylation. CONCLUSIONS: Given the role of CA3, IDH1 and GST in oxidative stress; PDIA3 in protein quality control, apoptosis and DNA repair and decreased glutamine synthetase as a sensitive marker of pericentral liver injury this proteome study of chronic ethanol-binge rat model identifies these proteins for the first time as molecular targets with potential role in progression of liver injury by binge ethanol drinking.

SELECTION OF CITATIONS
SEARCH DETAIL
...