Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(48): 19236-19252, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934628

ABSTRACT

Understanding the potential impact of organic contaminants on male fertility is crucial, yet limited studies have examined these chemicals in semen, with most focusing on urine and blood. To address this gap, we developed and validated a robust LC-HRMS methodology for semen analysis, with a focus on polar and semipolar chemicals. Our methodology enables the quantitative (or semiquantitative) analysis of >2000 chemicals being compatible with suspect and nontarget strategies and providing unprecedented insights into the occurrence and potential bioaccumulation of diverse contaminants in this matrix. We comprehensively analyzed exogenous organic chemicals and associated metabolites in ten semen samples from Spanish participants collected in an area with a large presence of the chemical industry included in the LED-FERTYL Spanish study cohort. This investigation revealed the presence of various contaminants in semen, including plastic additives, PFAS, flame retardants, surfactants, and insecticides. Notably, prevalent plastic additives such as phthalic acid esters and bisphenols were identified, indicating potential health risks. Additionally, we uncovered previously understudied chemicals like the tire additive 2-mercaptobenzothiazole and specific organophosphate flame retardants. This study showcases the potential of our methodology as a valuable tool for large-scale cohort studies, providing insights into the association between contaminant exposure and the risk of male fertility impairments.


Subject(s)
Flame Retardants , Insecticides , Humans , Male , Semen/chemistry , Flame Retardants/analysis , Organic Chemicals/analysis , Semen Analysis
2.
Anal Bioanal Chem ; 415(29-30): 7297-7313, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37946034

ABSTRACT

Chemicals infiltrate our daily experiences through multiple exposure pathways. Human biomonitoring (HBM) is routinely used to comprehensively understand these chemical interactions. Historically, HBM depended on targeted screening methods limited to a relatively small set of chemicals with triple quadrupole instruments typically. However, recent advances in high-resolution mass spectrometry (HRMS) have facilitated the use of broad-scope target, suspect, and non-target strategies, enhancing chemical exposome characterization within acceptable detection limits. Despite these advancements, establishing robust and efficient sample treatment protocols is still essential for trustworthy broad-range chemical analysis. This study sought to validate a methodology leveraging HRMS-based strategies for accurate profiling of exogenous chemicals and related metabolites in urine samples. We evaluated five extraction protocols, each encompassing various chemical classes, such as pharmaceuticals, plastic additives, personal care products, and pesticides, in terms of their extraction recoveries, linearity, matrix effect, sensitivity, and reproducibility. The most effective protocol was extensively validated and subsequently applied to 10 real human urine samples using wide-scope target analysis encompassing over 2000 chemicals. We successfully identified and semi-quantified a total of 36 chemicals using an ionization efficiency-based model, affirming the methodology's robust performance. Notably, our results dismissed the need for a deconjugation step, a typically labor-intensive and time-consuming process.


Subject(s)
Environmental Monitoring , Humans , Environmental Monitoring/methods , Chromatography, Liquid/methods , Reproducibility of Results , Gas Chromatography-Mass Spectrometry , Mass Spectrometry/methods
3.
MethodsX ; 10: 102069, 2023.
Article in English | MEDLINE | ID: mdl-36879761

ABSTRACT

Little is known about the presence of organic pollutants in human brain (and even less in brain tumors). In this regard, it is necessary to develop new analytical protocols capable of identifying a wide range of exogenous chemicals in this type of samples (by combining target, suspect and non-target strategies). These methodologies should be robust and simple. This is particularly challenging for solid samples, as reliable extraction and clean-up techniques should be combined to obtain an optimal result. Hence, the present study focuses on the development of an analytical methodology that allows the screening of a wide range of organic chemicals in brain and brain tumor samples. This protocol was based on a solid-liquid extraction based on bead beating, solid-phase extraction clean-up with multi-layer mixed-mode cartridges, reconstitution and LC-HRMS analysis. To evaluate the performance of the extraction methodology, a set of 66 chemicals (e.g., pharmaceuticals, biocides, or plasticizers, among others) with a wide range of physicochemical properties was employed. Quality control parameters (i.e., linear range, sensitivity, matrix effect (ME%), and recoveries (R%)) were calculated and satisfactory results were obtained for them (e.g., R% within 60-120% for 32 chemicals, or ME% higher than 50% (signal suppression) for 79% of the chemicals).

SELECTION OF CITATIONS
SEARCH DETAIL
...