Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 55(1): 76, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919645

ABSTRACT

BACKGROUND: Hoof structure and health are essential for the welfare and productivity of beef cattle. Therefore, we assessed the genetic and genomic background of foot score traits in American (US) and Australian (AU) Angus cattle and investigated the feasibility of performing genomic evaluations combining data for foot score traits recorded in US and AU Angus cattle. The traits evaluated were foot angle (FA) and claw set (CS). In total, 109,294 and ~ 1.12 million animals had phenotypic and genomic information, respectively. Four sets of analyses were performed: (1) genomic connectedness between US and AU Angus cattle populations and population structure, (2) estimation of genetic parameters, (3) single-step genomic prediction of breeding values, and (4) single-step genome-wide association studies for FA and CS. RESULTS: There was no clear genetic differentiation between US and AU Angus populations. Similar heritability estimates (FA: 0.22-0.24 and CS: 0.22-0.27) and moderate-to-high genetic correlations between US and AU foot scores (FA: 0.61 and CS: 0.76) were obtained. A joint-genomic prediction using data from both populations outperformed within-country genomic evaluations. A genomic prediction model considering US and AU datasets as a single population performed similarly to the scenario accounting for genotype-by-environment interactions (i.e., multiple-trait model considering US and AU records as different traits), even though the genetic correlations between countries were lower than 0.80. Common significant genomic regions were observed between US and AU for FA and CS. Significant single nucleotide polymorphisms were identified on the Bos taurus (BTA) chromosomes BTA1, BTA5, BTA11, BTA13, BTA19, BTA20, and BTA23. The candidate genes identified were primarily from growth factor gene families, including FGF12 and GDF5, which were previously associated with bone structure and repair. CONCLUSIONS: This study presents comprehensive population structure and genetic and genomic analyses of foot scores in US and AU Angus cattle populations, which are essential for optimizing the implementation of genomic selection for improved foot scores in Angus cattle breeding programs. We have also identified candidate genes associated with foot scores in the largest Angus cattle populations in the world and made recommendations for genomic evaluations for improved foot score traits in the US and AU.


Subject(s)
Genome-Wide Association Study , Genome , Cattle/genetics , Animals , Genome-Wide Association Study/veterinary , Australia , Phenotype , Genotype , Genomics , Polymorphism, Single Nucleotide
2.
Genet Sel Evol ; 55(1): 3, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658485

ABSTRACT

BACKGROUND: Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic and genomic background of North American Angus cow temperament measured throughout their lifetime around the weaning season, including the development of a new indicator trait termed docility-based learning and behavioral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) temperament, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle. RESULTS: CT measured across years is heritable (0.38-0.53). Positive and strong genetic correlations (0.91-1.00) were observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate genes changed over time. A small but significant genetic component was observed for learning and behavioral plasticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, development delay, cognitive development, and behavioral changes in cattle and other species. CONCLUSIONS: Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportunities to improve the long-term animal and handler welfare through habituation.


Subject(s)
Genomics , Temperament , Female , Cattle/genetics , Animals , Temperament/physiology , Genotype , Phenotype , North America
3.
J Anim Sci ; 96(3): 854-866, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29401225

ABSTRACT

Shortening the period of recording individual feed intake may improve selection response for feed efficiency by increasing the number of cattle that can be recorded given facilities of fixed capacity. Individual DMI and ADG records of 3,462 steers and 2,869 heifers over the entire intake recording period (range 62 to 154 d; mean 83 d; DMI83 and ADG83, respectively), DMI and ADG for the first 42 d of the recording period (DMI42 and ADG42, respectively), and postweaning ADG based on the difference between weaning and yearling weights (PADG) were analyzed. Genetic correlations among DMI42 and DMI83, ADG42 and ADG83, ADG42 and PADG, and ADG83 and PADG were 0.995, 0.962, 0.852, and 0.822, respectively. Four objective functions [feed:gain ratio in steers (FGS) and heifers (FGH); residual gain (RG); and residual feed intake (RFI)] based on DMI83 and ADG83 were considered. Indices using DMI42 and ADG42 (I42); DMI42 and PADG (IPW); and DMI42, ADG42, and PADG (IALL) were developed. Accuracy of the 5 EBV, 4 objectives, and 12 objective × index combinations were computed for all 12,033 animals in the pedigree. Accuracies of indices (IA) were summarized for animals with accuracies for objectives (OA) of 0.25, 0.5, 0.75, and 1. For the RG objective and animals with OA of 0.75, indices I42, IPW, and IALL had IA of 0.63, 0.55, and 0.67, respectively. Differences in IA increased with increased emphasis on ADG83 in the objective. Differences in IA between I42 and IPW usually increased with OA. Relative efficiency (RE) of selection on 42-d tests compared with 83 d was computed based on differences in IA and selection intensities of 5%, 25%, 50%, and 75% under the 83-d scenario, assuming 65% more animals could be tested for 42 d. For 25% selected for the RG objective, and animals with OA of 0.75, indices I42, IPW, and IALL had RE of 1.02, 0.90, and 1.10, respectively. As % selected, OA, and emphasis on DMI increased, RE increased. Relative efficiency varied considerably according to assumptions. One-half of the scenarios considered had RE > 1.15 with a maximum of 2.02 and 77% RE > 1.0. A shorter period of recording DMI can improve selection response for feed efficiency. Selection for the efficiency objectives would not affect PADG. It will be most effective if ADG over the period coinciding with intake recording and ADG over a much longer period of time are simultaneously included in a multiple-trait genetic evaluation with DMI and used in a selection index for efficiency.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Data Collection , Eating , Weight Gain/physiology , Animals , Body Weight , Cattle/growth & development , Energy Metabolism , Female , Male , Phenotype , Time Factors , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...