Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257255

ABSTRACT

The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.

2.
Org Lett ; 25(45): 8051-8056, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37791663

ABSTRACT

The N-tert-butanesulfinylimine group behaves as a suitable electron-withdrawing group in 1-azadienes, allowing the diastereoselective synthesis of densely substituted pyrrolidines by 1,3-dipolar cycloadditions (1,3-DCs) with azomethylene ylides. The use of Ag2CO3 as catalyst has allowed one to obtain a wide variety of proline derivatives with high regio- and diastereoselectivities. Subsequent efficient transformations provide valuable proline derivatives, some of which can be used as organocatalysts. The influence of the N-tert-butanesulfinyl group on the diastereoselectivity was studied by computational methods.

3.
J Org Chem ; 87(21): 14819-14824, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36178434

ABSTRACT

The asymmetric synthesis of bicyclic highly substituted tetrahydropyrans is described. The reaction is catalyzed by unnatural γ-dipeptides based on densely substituted l- and d-proline derivatives. This organocatalytic one-pot reaction takes place among a ketone, a nitroalkene, and an aldehyde to yield an octahydro-2H-chromene scaffold. Monomeric species, from which the corresponding γ-dipeptides are synthesized, cannot catalyze the reaction, thus confirming the emergent nature of the catalytic behavior of these dimeric species.


Subject(s)
Dipeptides , Proline , Catalysis , Ketones , Aldehydes
4.
Biochim Biophys Acta Gen Subj ; 1863(1): 96-104, 2019 01.
Article in English | MEDLINE | ID: mdl-30292448

ABSTRACT

Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms , Esters/pharmacology , Haemophilus influenzae/drug effects , Microbial Sensitivity Tests , Streptococcus pneumoniae/drug effects , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Drug Resistance, Bacterial , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Permeability/drug effects
5.
J Org Chem ; 80(11): 5588-99, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25974363

ABSTRACT

Homochiral methyl 4-aminopyrrolidine-2-carboxylates are readily obtained by means of asymmetric (3 + 2) cycloadditions between azomethine ylides and nitroalkenes, followed by catalytic hydrogenation of the intermediate 4-nitro cycloadducts. These 4-aminopyrrolidine-2-carboxylate esters belong to the L-series of natural amino acids and catalyze asymmetric Michael additions of ketones to nitroalkenes. However, the enantioselectivity observed with these novel unnatural organocatalysts is opposite to that obtained with L-proline. Since both 4-nitro and 4-amino L-proline esters are efficient organocatalysts of aldol reactions, these results permit to modulate asymmetric quimioselective aldol and conjugate addition reactions.


Subject(s)
Alkenes/chemistry , Esters/chemistry , Ketones/chemistry , Nitro Compounds/chemistry , Proline/chemistry , Catalysis , Cycloaddition Reaction , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...