Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36082537

ABSTRACT

The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.

2.
mSphere ; 7(5): e0033222, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36005385

ABSTRACT

Metagenomic next-generation sequencing (mNGS) offers a hypothesis-free approach for pathogen detection, but its applicability in clinical diagnosis, in addition to other factors, remains limited due to complicated library construction. The present study describes a PCR-free isothermal workflow for mNGS targeting RNA, based on a multiple displacement amplification, termed circular whole-transcriptome amplification (cWTA), as the template is circularized before amplification. The cWTA approach was validated with clinical samples and nanopore sequencing. Reads homologous to dengue virus 2 and chikungunya virus were detected in clinical samples from Bangladesh and Brazil, respectively. In addition, the practicality of a high-throughput detection system that combines mNGS and a group testing algorithm termed mNGS screening enhanced by a group testing algorithm (mEGA) was established. This approach enabled significant library size reduction while permitting trackability between samples and diagnostic results. Serum samples of patients with undifferentiated febrile illnesses from Vietnam (n = 43) were also amplified with cWTA, divided into 11 pools, processed for library construction, and sequenced. Dengue virus 2, hepatitis B virus, and parvovirus B19 were successfully detected without prior knowledge of their existence. Collectively, cWTA with the nanopore platform opens the possibility of hypothesis-free on-site comprehensive pathogen diagnosis, while mEGA contributes to the scaling up of sample throughput. IMPORTANCE Given the breadth of pathogens that cause infections, a single approach that can detect a wide range of pathogens is ideal but is impractical due to the available tests being highly specific to a certain pathogen. Recent developments in sequencing technology have introduced mNGS as an alternative that provides detection of a wide-range of pathogens by detecting the presence of their nucleic acids in the sample. However, sequencing library preparation is still a bottleneck, as it is complicated, costly, and time-consuming. In our studies, alternative approaches to optimize library construction for mNGS were developed. This included isothermal nucleic acid amplification and expansion of sample throughput with a group testing algorithm. These methods can improve the utilization of mNGS as a diagnostic tool and can serve as a high-throughput screening system aiding infectious disease surveillance.


Subject(s)
Nucleic Acids , Transcriptome , Humans , High-Throughput Nucleotide Sequencing/methods , Algorithms , RNA
3.
Life Sci Alliance ; 5(7)2022 07.
Article in English | MEDLINE | ID: mdl-35383111

ABSTRACT

Immune responses are different between individuals and personal health histories and unique environmental conditions should collectively determine the present state of immune cells. However, the molecular systems underlying such heterogeneity remain elusive. Here, we conducted a systematic time-lapse single-cell analysis, using 171 single-cell libraries and 30 mass cytometry datasets intensively for seven healthy individuals. We found substantial diversity in immune-cell profiles between different individuals. These patterns showed daily fluctuations even within the same individual. Similar diversities were also observed for the T-cell and B-cell receptor repertoires. Detailed immune-cell profiles at healthy statuses should give essential background information to understand their immune responses, when the individual is exposed to various environmental conditions. To demonstrate this idea, we conducted the similar analysis for the same individuals on the vaccination of influenza and SARS-CoV-2. In fact, we detected distinct responses to vaccines between individuals, although key responses are common. Single-cell immune-cell profile data should make fundamental data resource to understand variable immune responses, which are unique to each individual.


Subject(s)
COVID-19 , Single-Cell Analysis , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
4.
Sci Rep ; 11(1): 19031, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561471

ABSTRACT

Nucleic acid test (NAT), most typically quantitative PCR, is one of the standard methods for species specific flavivirus diagnosis. Semi-comprehensive NATs such as pan-flavivirus PCR which covers genus Flavivirus are also available; however, further specification by sequencing is required for species level differentiation. In this study, a semi-comprehensive detection system that allows species differentiation of flaviviruses was developed by integration of the pan-flavivirus PCR and Nanopore sequencing. In addition, a multiplexing method was established by adding index sequences through the PCR with a streamlined bioinformatics pipeline. This enables defining cut-off values for observed read counts. In the laboratory setting, this approach allowed the detection of up to nine different flaviviruses. Using clinical samples collected in Vietnam and Brazil, seven different flaviviruses were also detected. When compared to a commercial NAT, the sensitivity and specificity of our system were 66.7% and 95.4%, respectively. Conversely, when compared to our system, the sensitivity and specificity of the commercial NAT were 57.1% and 96.9%, respectively. In addition, Nanopore sequencing detected more positive samples (n = 8) compared to the commercial NAT (n = 6). Collectively, our study has established a semi-comprehensive sequencing-based diagnostic system for the detection of flaviviruses at extremely affordable costs, considerable sensitivity, and only requires simple experimental methods.


Subject(s)
Flavivirus Infections/diagnosis , Flavivirus Infections/virology , Flavivirus/isolation & purification , Nanopore Sequencing/methods , Brazil , Computational Biology/methods , Flavivirus/genetics , Humans , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Vietnam
5.
BMC Res Notes ; 10(1): 147, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28376874

ABSTRACT

BACKGROUND: Malaria still poses one of the major threats to human health. Development of effective antimalarial drugs has decreased this threat; however, the emergence of drug-resistant Plasmodium falciparum, a cause of Malaria, is disconcerting. The antimalarial drug chloroquine has been effectively used, but resistant parasites have spread worldwide. Interestingly, the withdrawal of the drug reportedly leads to an increased population of susceptible parasites in some cases. We examined the prevalence of genomic polymorphisms in a malaria parasite P. falciparum, associated with resistance to an antimalarial drug chloroquine, after the withdrawal of the drug from Indonesia. RESULTS: Blood samples were collected from 95 malaria patients in North Sulawesi, Indonesia, in 2010. Parasite DNA was extracted and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for pfcrt and pfmdr1. In parallel, multiplex amplicon sequencing for the same genes was carried out with Illumina MiSeq. Of the 59 cases diagnosed as P. falciparum infection by microscopy, PCR-RFLP analysis clearly identified the genotype 76T in pfcrt in 44 cases. Sequencing analysis validated the identified genotypes in the 44 cases and demonstrated that the haplotype in the surrounding genomic region was exclusively SVMNT. Results of pfmdr1 were successfully obtained for 51 samples, where the genotyping results obtained by the two methods were completely consistent. In pfmdr1, the 86Y mutant genotype was observed in 45 cases (88.2%). CONCLUSIONS: Our results suggest that the prevalence of the mutated genotypes remained dominant even 6 years after the withdrawal of chloroquine from this region. Diversified haplotype of the resistance-related locus, potentially involved in fitness costs, unauthorized usage of chloroquine, and/or a short post-withdrawal period may account for the observed high persistence of prevalence.


Subject(s)
Chloroquine/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Antimalarials/therapeutic use , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Drug Resistance, Multiple/genetics , Gene Frequency , Genotype , Geography , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Indonesia , Malaria, Falciparum/parasitology , Mutation , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...