Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 14: 212, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23547856

ABSTRACT

BACKGROUND: Although Candida albicans and Candida dubliniensis are most closely related, both species behave significantly different with respect to morphogenesis and virulence. In order to gain further insight into the divergent routes for morphogenetic adaptation in both species, we investigated qualitative along with quantitative differences in the transcriptomes of both organisms by cDNA deep sequencing. RESULTS: Following genome-associated assembly of sequence reads we were able to generate experimentally verified databases containing 6016 and 5972 genes for C. albicans and C. dubliniensis, respectively. About 95% of the transcriptionally active regions (TARs) contain open reading frames while the remaining TARs most likely represent non-coding RNAs. Comparison of our annotations with publically available gene models for C. albicans and C. dubliniensis confirmed approximately 95% of already predicted genes, but also revealed so far unknown novel TARs in both species. Qualitative cross-species analysis of these databases revealed in addition to 5802 orthologs also 399 and 49 species-specific protein coding genes for C. albicans and C. dubliniensis, respectively. Furthermore, quantitative transcriptional profiling using RNA-Seq revealed significant differences in the expression of orthologs across both species. We defined a core subset of 84 hyphal-specific genes required for both species, as well as a set of 42 genes that seem to be specifically induced during hyphal morphogenesis in C. albicans. CONCLUSIONS: Species-specific adaptation in C. albicans and C. dubliniensis is governed by individual genetic repertoires but also by altered regulation of conserved orthologs on the transcriptional level.


Subject(s)
Candida albicans/genetics , Candida/genetics , Genome, Fungal , Transcriptome , Databases, Genetic , Gene Expression Regulation, Fungal , Gene Library , High-Throughput Nucleotide Sequencing , Open Reading Frames , Sequence Analysis, RNA
2.
BMC Genomics ; 13: 550, 2012 Oct 13.
Article in English | MEDLINE | ID: mdl-23062031

ABSTRACT

BACKGROUND: Small non-coding RNAs (sRNAs) have attracted attention as a new class of gene regulators in both eukaryotes and bacteria. Genome-wide screening methods have been successfully applied in Gram-negative bacteria to identify sRNA regulators. Many sRNAs are well characterized, including their target mRNAs and mode of action. In comparison, little is known about sRNAs in Gram-positive pathogens. In this study, we identified novel sRNAs in the exclusively human pathogen Streptococcus pyogenes M49 (Group A Streptococcus, GAS M49), employing a whole genome intergenic tiling array approach. GAS is an important pathogen that causes diseases ranging from mild superficial infections of the skin and mucous membranes of the naso-pharynx, to severe toxic and invasive diseases. RESULTS: We identified 55 putative sRNAs in GAS M49 that were expressed during growth. Of these, 42 were novel. Some of the newly-identified sRNAs belonged to one of the common non-coding RNA families described in the Rfam database. Comparison of the results of our screen with the outcome of two recently published bioinformatics tools showed a low level of overlap between putative sRNA genes. Previously, 40 potential sRNAs have been reported to be expressed in a GAS M1T1 serotype, as detected by a whole genome intergenic tiling array approach. Our screen detected 12 putative sRNA genes that were expressed in both strains. Twenty sRNA candidates appeared to be regulated in a medium-dependent fashion, while eight sRNA genes were regulated throughout growth in chemically defined medium. Expression of candidate genes was verified by reverse transcriptase-qPCR. For a subset of sRNAs, the transcriptional start was determined by 5' rapid amplification of cDNA ends-PCR (RACE-PCR) analysis. CONCLUSIONS: In accord with the results of previous studies, we found little overlap between different screening methods, which underlines the fact that a comprehensive analysis of sRNAs expressed by a given organism requires the complementary use of different methods and the investigation of several environmental conditions. Despite a high conservation of sRNA genes within streptococci, the expression of sRNAs appears to be strain specific.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial/genetics , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Streptococcus pyogenes/genetics , Base Sequence , Blotting, Northern , Computational Biology , DNA, Intergenic/genetics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology , Species Specificity , Streptococcus pyogenes/growth & development
3.
Front Neurol ; 3: 62, 2012.
Article in English | MEDLINE | ID: mdl-22557989

ABSTRACT

A night without sleep is followed by enhanced sleepiness, increased low-frequency activity in the waking EEG, and reduced vigilant attention. The magnitude of these changes is highly variable among healthy individuals. Findings in young men of low and high subjective caffeine sensitivity suggest that adenosinergic mechanisms contribute to inter-individual differences in sleep deprivation-induced changes in EEG theta activity, as well as optimal performance on the psychomotor vigilance task (PVT). In comparison to young subjects, healthy adults of older age typically feel less sleepy after sleep deprivation, and show fewer response lapses, and faster reaction times on the PVT, especially in the morning after the night without sleep. We hypothesized that age-related changes in adenosine signal transmission underlie reduced vulnerability to sleep deprivation in older individuals. To test this hypothesis, the combined effects of prolonged wakefulness and the adenosine receptor antagonist, caffeine, on an antero-posterior power gradient in EEG theta activity and PVT performance were analyzed in healthy older and caffeine-insensitive and -sensitive young men. The results show that age-related differences in sleep loss-induced changes in brain rhythmic activity and neurobehavioral functions are mirrored in young individuals of low and high sensitivity to the stimulant effects of caffeine. Moreover, the effects of sleep deprivation and caffeine on regional theta power and vigilant attention are inversely correlated across older and young age groups. Genetic variants of the adenosine A(2A) receptor gene contribute to individual differences in neurobehavioral performance in rested and sleep deprived state, and modulate the actions of caffeine in wakefulness and sleep. Based upon this evidence, we propose that age-related differences in A(2A) receptor-mediated signal transduction could be involved in age-related changes in the vulnerability to acute sleep deprivation.

4.
Nucleic Acids Res ; 39(10): 4235-48, 2011 May.
Article in English | MEDLINE | ID: mdl-21278422

ABSTRACT

Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.


Subject(s)
Listeria monocytogenes/genetics , Macrophages/microbiology , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Animals , Cell Line , Female , Gene Expression Profiling , Listeria/genetics , Listeria monocytogenes/growth & development , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Mice , Mice, Inbred BALB C , Mutation , RNA, Antisense/metabolism , Regulatory Sequences, Ribonucleic Acid , Riboswitch , Sequence Analysis, RNA
5.
BMC Genomics ; 11: 226, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20374638

ABSTRACT

BACKGROUND: Cytokines such as TNF-alpha and IL-1 beta are known for their contribution to inflammatory processes in liver. In contrast, the cytokine IL-17 has not yet been assigned a role in liver diseases. IL-17 can cooperate with TNF-alpha to induce a synergistic response on several target genes in different cell lines, but no data exist for primary hepatocytes. To enhance our knowledge on the impact of IL-17 alone and combined with TNF-alpha in primary murine hepatocytes a comprehensive microarray study was designed. IL-1 beta was included as this cytokine is suggested to act in a similar manner as the combination of TNF-alpha and IL-17, especially with respect to its role in mRNA stabilization. RESULTS: The present microarray analysis demonstrates that primary murine hepatocytes responded to IL-17 stimulation by upregulation of chemokines and genes, which are functionally responsible to increase and sustain inflammation. Cxcl2, Nfkbiz and Zc3h12a were strongly induced, whereas the majority of the genes were only very moderately up-regulated. Promoter analysis revealed involvement of NF-kappaB in the activation of many genes. Combined stimulation of TNF-alpha/IL-17 resulted in enhanced induction of gene expression, but significantly synergistic effects could be applied only to a few genes, such as Nfkbiz, Cxcl2, Zc3h12 and Steap4. Comparison of the gene expression profile obtained after stimulation of TNF-alpha/IL-17 versus IL-1 beta proposed an "IL-1 beta-like effect" of the latter cytokine combination. Moreover, evidence was provided that modulation of mRNA stability may be a major mechanism by which IL-17 regulates gene expression in primary hepatocytes. This assumption was exemplarily proven for Nfkbiz mRNA for the first time in hepatocytes. Our studies also suggest that RNA stability can partially be correlated to the existence of AU rich elements, but further mechanisms like the RNase activity of the up-regulated Zc3h12a have to be considered. CONCLUSIONS: Our microarray analysis gives new insights in IL-17 induced gene expression in primary hepatocytes highlighting the crosstalk with the NF-kappaB signaling pathway. Gene expression profile suggests IL-17 alone and in concert with TNF-alpha a role in sustaining liver inflammatory processes. IL-17 might exceed this function by RNA stabilization.


Subject(s)
Hepatocytes/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , Animals , Cells, Cultured , Genome-Wide Association Study , Mice , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , RNA Stability , RNA, Messenger/genetics , Signal Transduction , Transcription, Genetic
6.
Microb Biotechnol ; 3(6): 658-76, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21255362

ABSTRACT

In the recent years, the number of drug- and multi-drug-resistant microbial strains has increased rapidly. Therefore, the need to identify innovative approaches for development of novel anti-infectives and new therapeutic targets is of high priority in global health care. The detection of small RNAs (sRNAs) in bacteria has attracted considerable attention as an emerging class of new gene expression regulators. Several experimental technologies to predict sRNA have been established for the Gram-negative model organism Escherichia coli. In many respects, sRNA screens in this model system have set a blueprint for the global and functional identification of sRNAs for Gram-positive microbes, but the functional role of sRNAs in colonization and pathogenicity for Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Clostridium difficile is almost completely unknown. Here, we report the current knowledge about the sRNAs of these socioeconomically relevant Gram-positive pathogens, overview the state-of-the-art high-throughput sRNA screening methods and summarize bioinformatics approaches for genome-wide sRNA identification and target prediction. Finally, we discuss the use of modified peptide nucleic acids (PNAs) as a novel tool to inactivate potential sRNA and their applications in rapid and specific detection of pathogenic bacteria.


Subject(s)
Gene Expression Regulation, Bacterial , Gram-Positive Bacteria/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriological Techniques/methods , Biological Products/genetics , Biological Products/pharmacology , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/physiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Humans , RNA, Antisense/genetics , RNA, Antisense/pharmacology
7.
Sleep ; 31(6): 859-67, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18548831

ABSTRACT

STUDY OBJECTIVES: We recently proposed insufficient non-rapid eye movement sleep (NREMS) intensity to contribute to disturbed nocturnal sleep in patients with narcolepsy-cataplexy (NC). To test this hypothesis, we investigated the effect of physiologically intensified NREMS in recovery sleep following sleep deprivation. DESIGN: Nocturnal baseline and recovery sleep architecture, and the sleep electroencephalogram (EEG) before and after 40 hours of sustained wakefulness were compared between 6 drug-free patients with NC (age range: 19-37 years) and 6 individually matched, healthy control subjects (18-43 years). MEASUREMENTS: Sleep and sleep EEG power spectra (C3A2 derivation). The dynamics of the homeostatic Process S were estimated from the time course of slow-wave activity (SWA, spectral power within 0.75-4.5 Hz) across consecutive NREMS episodes. SETTINGS: Sleep research laboratory. RESULTS: In baseline, SWA decreased across consecutive NREMS episodes in patients with NC and control subjects. The build-up of SWA, however, was attenuated in NC in the second episode (P = 0.01) due to a higher number of short wake periods (P = 0.02). Prolonged wakefulness increased initial SWA in both groups (P = 0.003) and normalized the baseline differences between patients and control subjects in the time course of SWA in NREMS. The changed dynamics of SWA in the patients in recovery sleep when compared with baseline were associated with reduced numbers of intermittent wake periods in the first (P = 0.01) and second (P = 0.04) NREMS episodes. All patients, but no control subjects, showed a sleep-onset rapid eye movement period (SOREMP) in both baseline and recovery sleep. Sleep deprivation increased SOREMP duration (P = 0.03). CONCLUSIONS: Increased SWA after sleep deprivation indicates that sleep homeostasis is functional in NC. Increased NREMS intensity in recovery sleep postpones sleep fragmentation, supporting our concept that sleep fragmentation is directly related to insufficient NREMS intensity in NC. The persistence of SOREMP despite enhanced NREMS pressure suggests an abnormal interaction between NREMS and REMS regulatory processes.


Subject(s)
Homeostasis/physiology , Narcolepsy/physiopathology , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/epidemiology , Sleep/physiology , Adolescent , Adult , Cataplexy/physiopathology , Electroencephalography , Female , Humans , Male , Polysomnography , Sleep Deprivation/diagnosis , Sleep Deprivation/epidemiology , Sleep Stages/physiology , Wakefulness
8.
Sleep ; 30(8): 980-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17702267

ABSTRACT

STUDY OBJECTIVES: To compare electroencephalogram (EEG) dynamics during nocturnal sleep in patients with narcolepsy-cataplexy and healthy controls. Fragmented nocturnal sleep is a prominent feature and contributes to excessive daytime sleepiness in narcolepsy-cataplexy. Only 3 studies have addressed changes in homeostatic sleep regulation as a possible mechanism underlying nocturnal sleep fragmentation in narcolepsy-cataplexy. DESIGN, SETTING AND PARTICIPANTS: Baseline sleep of 11 drug-naive patients with narcolepsy-cataplexy (19-37 years) and 11 matched controls (18-41 years) was polysomnographically recorded. The EEG was subjected to spectral analysis. INTERVENTIONS: None, baseline condition. MEASUREMENTS AND RESULTS: All patients with narcolepsy-cataplexy but no control subjects showed a sleep-onset rapid eye movement (REM) episode. Non-REM (NREM)-REM sleep cycles were longer in patients with narcolepsy-cataplexy than in controls (P = 0.04). Mean slow-wave activity declined in both groups across the first 3 NREM sleep episodes (P<0.001). The rate of decline, however, appeared to be steeper in patients with narcolepsy-cataplexy (time constant: narcolepsy-cataplexy 51.1 +/- 23.8 minutes [mean +/- SEM], 95% confidence interval [CI]: 33.4-108.8 minutes) than in controls (169.4 +/- 81.5 minutes, 95% CI: 110.9-357.6 minutes) as concluded from nonoverlapping 95% confidence interval of the time constants. The steeper decline of SWA in narcolepsy-cataplexy compared to controls was related to an impaired build-up of slow-wave activity in the second cycle. Sleep in the second cycle was interrupted in patients with narcolepsy-cataplexy, when compared with controls, by an increased number (P = 0.01) and longer duration (P = 0.01) of short wake episodes. CONCLUSIONS: Insufficient NREM sleep intensity is associated with nonconsolidated nocturnal sleep in narcolepsy-cataplexy. The inability to consolidate sleep manifests itself when NREM sleep intensity has decayed below a certain level and is reflected in an altered time course of slow-wave activity across NREM sleep episodes.


Subject(s)
Cataplexy/diagnosis , Narcolepsy/diagnosis , Sleep Deprivation/diagnosis , Sleep Stages/physiology , Adolescent , Adult , Beta Rhythm , Cataplexy/physiopathology , Cerebral Cortex/physiopathology , Delta Rhythm , Female , Humans , Male , Narcolepsy/physiopathology , Polysomnography , Reference Values , Sleep Deprivation/physiopathology
9.
Neuroreport ; 18(8): 803-7, 2007 May 28.
Article in English | MEDLINE | ID: mdl-17471070

ABSTRACT

We investigated the effects of radio frequency electromagnetic fields on brain physiology. Twenty-four healthy young men were exposed for 30 min to pulse-modulated or continuous-wave radio frequency electromagnetic fields (900 MHz; peak specific absorption rate 1 W/kg), or sham exposed. During exposure, participants performed cognitive tasks. Waking electroencephalogram was recorded during baseline, immediately after, and 30 and 60 min after exposure. Pulse-modulated radio frequency electromagnetic field exposure reduced reaction speed and increased accuracy in a working-memory task. It also increased spectral power in the waking electroencephalogram in the 10.5-11 Hz range 30 min after exposure. No effects were observed for continuous-wave radio frequency electromagnetic fields. These findings provide further evidence for a nonthermal biological effect of pulsed radio frequency electromagnetic fields.


Subject(s)
Cognition/radiation effects , Electroencephalography/radiation effects , Radio Waves , Wakefulness , Adult , Humans , Male , Neuropsychological Tests , Time Factors
10.
J Neurosci ; 26(41): 10472-9, 2006 Oct 11.
Article in English | MEDLINE | ID: mdl-17035531

ABSTRACT

Large individual differences characterize the changes induced by sleep deprivation on neurobehavioral functions and rhythmic brain activity. To investigate adenosinergic mechanisms in these differences, we studied the effects of prolonged waking and the adenosine receptor antagonist caffeine on sustained vigilant attention and regional electroencephalogram (EEG) power in the ranges of theta activity (6.25-8.25 Hz) in waking and the slow oscillation (<1 Hz) in sleep. Activity in these frequencies is functionally related to sleep deprivation. In 12 subjectively caffeine-sensitive and 10 -insensitive young men, psychomotor vigilance task (PVT) performance and EEG were assessed at 3 h intervals before, during, and after one night without sleep. After 11 and 23 h waking, subjects received 200 mg caffeine and placebo in double-blind, cross-over manner. In the placebo condition, sleep deprivation impaired PVT speed more in caffeine-sensitive than in caffeine-insensitive men. This difference was counteracted by caffeine. Theta power in waking increased more in a frontal EEG derivation than in a posterior derivation. Caffeine attenuated this power gradient in caffeine sensitive subjects. Sleep loss also differently affected the power distribution <1 Hz in non-rapid eye movement sleep between caffeine sensitive and insensitive subjects. Also, this difference was mirrored by the action of caffeine. The effects of sleep deprivation and caffeine on sustained attention and regional EEG power in waking and sleep were inversely related. These findings suggest that adenosinergic mechanisms contribute to individual differences in waking-induced impairment of neurobehavioral performance and functional aspects of EEG topography associated with sleep deprivation.


Subject(s)
Adenosine/physiology , Brain/physiology , Electroencephalography , Psychomotor Performance/physiology , Receptors, Purinergic P1/physiology , Sleep Deprivation/physiopathology , Adult , Brain/drug effects , Caffeine/administration & dosage , Cross-Over Studies , Electroencephalography/drug effects , Electroencephalography/methods , Humans , Individuality , Male , Polysomnography/methods , Psychomotor Performance/drug effects , Purinergic P1 Receptor Antagonists , Sleep Stages/drug effects , Sleep Stages/physiology
11.
J Sleep Res ; 15(1): 31-40, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16490000

ABSTRACT

Neurophysiological and functional imaging studies have demonstrated that frontal regions of the brain are particularly responsive to homeostatic sleep pressure. Previous neuropsychological studies indicate that sleep deprivation causes impairments in prefrontal cortical function. Random number generation (RNG) is thought to provide a sensitive index of executive functions that rely on the prefrontal cortex. The present study tested the hypothesis that sleep deprivation would impair RNG and that caffeine would mitigate this impairment. Healthy young men (n = 21) participated in two 40-h sleep deprivations 1 week apart. During each sleep deprivation period subjects received either caffeine or placebo according to a randomized, double-blind cross-over design, and they completed an oral RNG task at 3-h intervals. Comparison of test sessions at analogous times of day revealed that sleep deprivation was associated with significant drops in the number of responses, a threefold increase in the percentage of rule violations, 59% greater response redundancy and a 20% increase in stereotypy of adjacent response pairs. Sleep deprivation did not consistently alter counting tendency. Caffeine ameliorated the decrease in the number of responses but did not mitigate other deficits in RNG that arose during sleep deprivation. These findings are consistent with prior reports of diminished vigilance and increased perseveration during extended wakefulness. They support the conclusion that caffeine preserves simple aspects of cognitive performance during sleep deprivation, whereas caffeine may not prevent detrimental effects of sleep deprivation on some complex cognitive functions.


Subject(s)
Arousal/drug effects , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Mathematics , Reaction Time/drug effects , Sleep Deprivation/complications , Stereotyped Behavior/drug effects , Adult , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Cognition Disorders/physiopathology , Double-Blind Method , Humans , Male , Neuropsychological Tests , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Sleep Deprivation/physiopathology
12.
Sleep ; 29(1): 55-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16453981

ABSTRACT

STUDY OBJECTIVES: To examine whether vigilant attention and sleepiness develop differently during prolonged wakefulness in young and older men. DESIGN, SETTING, AND PARTICIPANTS: Psychomotor vigilance task (PVT) performance and subjective sleepiness were determined in 14 sessions at 3 hour intervals in healthy young (n = 12, mean age: 25.2 years, range: 21-31 years) and older (n = 11, mean age: 66.4 years, range: 61-70 years) men who were kept awake for 40 hours under continuous supervision in a sleep laboratory and on the morning after the recovery night. MEASUREMENTS AND RESULTS: PVT speed, response lapses and performance variability, and subjective sleepiness were analyzed. Sleep deprivation led to reversal of an age-related difference in PVT speed at the circadian trough of performance on the morning of the second day of prolonged wakefulness (Session x Age interaction: P < .0006). Beginning after 22 hours of wakefulness, the young men also produced more lapses (P < .004), showed higher performance instability (P < .0001), and felt sleepier (P < .03) than older men, especially during the morning after the night without sleep. CONCLUSIONS: Vigilant attention is more impaired after 1 night without sleep in young men than in older men, which has important implications for the prevention of accidents associated with the loss of sleep.


Subject(s)
Aging/physiology , Arousal/physiology , Attention , Disorders of Excessive Somnolence/etiology , Reaction Time , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Adult , Age Factors , Aged , Automobile Driving , Circadian Rhythm/physiology , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/epidemiology , Humans , Male , Middle Aged , Motivation , Psychomotor Performance/physiology , Time Factors
13.
Brain Res Cogn Brain Res ; 22(3): 323-31, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15722204

ABSTRACT

Napping benefits and sustains subsequent performance. Prophylactic naps have been recommended as a means to maintain performance during extended wakefulness, as required during shiftwork. However, napping may cause short-term performance impairments, because awakening from sleep is followed by sleep inertia, a period of hypovigilance and impaired cognitive and behavioral performance. We investigated sleep inertia after an afternoon nap. Healthy 18-28 year-olds (n=50, not sleep deprived) were assigned to sleep, active wake or rest groups for a 2-h experimental phase with polysomnography starting either at 14:00 or 16:00 for half of each group. Before (baseline, 12:30 or 14:30) and in five sessions during the hour after the experimental phase (16:00-17:00 or 18:00-19:00), subjects completed an addition task, an auditory reaction time task, and the Stanford Sleepiness Scale. In session one, addition speed in the sleep group was reduced compared with baseline and with active wake controls, whereas calculation accuracy did not change. Addition speed in the sleep and rest groups increased substantially from session one to session two and reached a level similar to that of the active wake group by the fifth session. In the first session, auditory reaction speed of the sleep group was reduced compared with baseline and with rest controls but did not differ from the active wake group. The slowest reaction times showed significant recovery after 20 min. The groups reported similar increases in subjective sleepiness after the experimental period. These findings provide evidence for performance slowing and recovery during the hour following a 2-h nap opportunity. They highlight the importance of employing multiple control groups and various objective and subjective measures to assess sleep inertia.


Subject(s)
Psychomotor Performance/physiology , Reaction Time/physiology , Rest/physiology , Sleep/physiology , Wakefulness/physiology , Acoustic Stimulation/methods , Adolescent , Adult , Analysis of Variance , Humans
14.
Neuropsychopharmacology ; 29(10): 1933-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15257305

ABSTRACT

Prolonged wakefulness increases electroencephalogram (EEG) low-frequency activity (< 10 Hz) in waking and sleep, and reduces spindle frequency activity (approximately 12-16 Hz) in non-rapid-eye-movement (nonREM) sleep. These physiologic markers of enhanced sleep propensity reflect a sleep-wake-dependent process referred to as sleep homeostasis. We hypothesized that caffeine, an adenosine receptor antagonist, reduces the increase of sleep propensity during waking. To test this hypothesis, we compared the effects of caffeine and placebo on EEG power spectra during and after 40 h of wakefulness. A total of 12 young men underwent two periods of sleep deprivation. According to a randomized, double-blind, crossover design, they received two doses of caffeine (200 mg) or placebo after 11 and 23 h of wakefulness. Sleep propensity was estimated at 3-h intervals by measuring subjective sleepiness and EEG theta (5-8 Hz) activity, and polysomnographic recordings of baseline and recovery nights. Saliva caffeine concentration decreased from 15.7 micromol/l 16 h before the recovery night, to 1.8 micromol/l 1 h before the recovery night. Compared with placebo, caffeine reduced sleepiness and theta activity during wakefulness. Compared with sleep under baseline conditions, sleep deprivation increased 0.75-8.0 Hz activity and reduced spindle frequency activity in nonREM sleep of the recovery nights. Although caffeine approached undetectable saliva concentrations before recovery sleep, it significantly reduced EEG power in the 0.75-2.0 Hz band and enhanced power in the 11.25-20.0 Hz range relative to placebo. These findings suggest that caffeine attenuated the build-up of sleep propensity associated with wakefulness, and support an important role of adenosine and adenosine receptors in the homeostatic regulation of sleep.


Subject(s)
Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Electroencephalography/drug effects , Homeostasis/drug effects , Sleep/drug effects , Wakefulness/drug effects , Adult , Caffeine/pharmacokinetics , Cross-Over Studies , Double-Blind Method , Humans , Male , Polysomnography/drug effects , Saliva/metabolism , Sleep Deprivation/physiopathology , Theta Rhythm/drug effects
15.
Lancet ; 363(9416): 1199-200, 2004 Apr 10.
Article in English | MEDLINE | ID: mdl-15081654

ABSTRACT

Narcolepsy with cataplexy is thought to be a hypocretin ligand or hypocretin receptor deficiency syndrome caused by genetic and environmental factors. We looked for an abnormality of the hypocretin pathway in HLA-DQB1*0602-positive monozygotic twins who were concordant for narcolepsy-cataplexy. They had normal cerebrospinal fluid concentrations of hypocretin-1, and we found no mutation in the prepro-hypocretin gene or either hypocretin receptor gene. Our finding points to the existence of presumably genetic forms of narcolepsy with cataplexy without any demonstrable defect in the hypocretin pathway.


Subject(s)
Carrier Proteins/cerebrospinal fluid , Diseases in Twins , Intracellular Signaling Peptides and Proteins , Narcolepsy/genetics , Neuropeptides/cerebrospinal fluid , Twins, Monozygotic , Adult , Female , HLA-DQ Antigens/analysis , HLA-DQ beta-Chains , Humans , Membrane Glycoproteins/analysis , Narcolepsy/cerebrospinal fluid , Narcolepsy/diagnosis , Narcolepsy/immunology , Neuropeptides/deficiency , Orexins , Polysomnography
SELECTION OF CITATIONS
SEARCH DETAIL
...