Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 54(6): 4813-4819, 2017 08.
Article in English | MEDLINE | ID: mdl-27525673

ABSTRACT

Chronic stress (CS) during early life represents a major risk factor for the development of mental disorders, including depression. According to the Two/Multiple-Hit hypothesis, the etiology of neuropsychiatric disorders usually involves multiple stressors experienced subsequently during different phases of life. However, the molecular and cellular mechanisms modulating neuronal and behavioral changes induced by multiple stress experiences are just poorly understood. Since the oxytocinergic and vasopressinergic systems are neuroendocrine modulators involved in environmentally driven adaptations of stress sensitivity we hypothesized that postnatal CS programs oxytocinergic and vasopressinergic receptor expression changes in response to a second stress exposure in young adulthood. First we investigated if postnatal CS (maternal separation + social isolation) induces depressive-like behavior and alters oxytocin receptor (OxtR) and arginine vasopressin receptor type 1a (AvpR1a) gene expression in the hippocampus (HC) of male mice and (2) if a second single stressor (forced swimming, FS) in young adulthood affects gene expression of OxtR and AvpR1a at adulthood dependent on CS pre-experience. We found that postnatal CS induced depressive-like behavior and enhanced AvpR1a expression in HC at young adulthood. Moreover, in line with our hypothesis, only combined stress exposure (CS + FS), but not CS or FS alone, resulted in increased gene expression of OxtR in HC at adulthood. In contrast, AvpR1a expression was decreased in both adult FS and CS + FS animals. Overall, our results provide evidence that CS programs neuroendocrine systems and thereby influences stress responses in later life periods.


Subject(s)
Aging/genetics , Behavior, Animal , Depression/etiology , Depression/genetics , Gene Expression Regulation , Receptors, Oxytocin/genetics , Receptors, Vasopressin/genetics , Stress, Psychological/complications , Animals , Animals, Newborn , Choice Behavior , Chronic Disease , Hippocampus/metabolism , Male , Maternal Deprivation , Mice, Inbred C57BL , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Social Isolation , Swimming
2.
Front Neurosci ; 8: 11, 2014.
Article in English | MEDLINE | ID: mdl-24550772

ABSTRACT

Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional "scars" in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of "stress inoculation" is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.

SELECTION OF CITATIONS
SEARCH DETAIL
...