Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014050

ABSTRACT

Invasive Rattus species are carriers of haemotropic Mycoplasmas (haemoplasmas) globally, but data from Africa are lacking. Using a PCR-sequencing approach, we assessed haemoplasma prevalence and diversity in kidney and buccal swabs collected from three invasive Rattus species (Rattus rattus, R. norvegicus and R. tanezumi) in Gauteng Province, South Africa. Whilst the overall sequence-confirmed haemoplasma prevalence was 38.4%, infection rates in R. rattus (58.3%) were significantly higher (χ2 = 12.96; df = 2; n = 99 p < 0.05) than for R. tanezumi (14.3%). Differences between host sex (χ2 = 3.59 × 10−31; df = 1; n = 99; p = 1.00) and age (χ2 = 4.28; df = 2; n = 99; p = 0.12) were not significant. Whilst buccal (1.01%) and ectoparasite positivity (2.13%) were low, these results suggest that multiple transmission routes are possible. Three phylogenetically distinct lineages, consistent with global rat-associated strains described to date, were detected, namely, 'Candidatus Mycoplasma haemomuris subsp. Ratti', and two Rattus-specific haemoplasmas that are yet to be formally described. These results expand the known distribution of invasive rat-associated haemoplasmas and highlight the potential for pathogen co-invasion of new territories together with invading rodent hosts.

2.
Infect Genet Evol ; 89: 104739, 2021 04.
Article in English | MEDLINE | ID: mdl-33535089

ABSTRACT

The importance of haemotropic Mycoplasma (haemoplasma) infections to animal and human health is increasingly recognised. Although wild rodents are known to host these bacteria, haemoplasma prevalence and diversity in small mammals is under-documented, globally. This is due to the reliance on molecular approaches to detect these unculturable, obligate bacteria and to a paucity of assays targeting informative gene regions. We attempted to address these challenges by evaluating the performance of three 16S rRNA PCR assays for detecting Mycoplasma in four African mole-rat species of the family Bathyergidae. This was achieved by screening DNA samples prepared from lung and liver samples of 260 bathyergids, sampled from natural and urban landscapes in the Western Cape Province with one published and two novel conventional PCR assays. Sequence-confirmed Mycoplasma presence guided calculations of the relative sensitivity and specificity of the assays and revealed that 26.5% of the rodents were haemoplasma-positive. Bathyergus suillus sampled near an informal human settlement had a significantly higher infection rate (42%) than the three bathyergid species sampled from natural settings, for which PCR-positivity ranged from 0% to 36%. The 16S rRNA gene phylogeny identified the presence of six Mycoplasma strains in bathyergids that form a novel monophyletic lineage belonging to the haemofelis group, with 16S rRNA and Rnase P gene phylogenies indicating that the bathyergid-associated haemoplasmas were novel and closely related to Mycoplasma coccoides. Assay sensitivity ranged from 60.3% to 76.8% and specificity from 94.8% to 100% and both were highest for the novel assay targeting a ~ 300 bp region of the 16S rRNA gene. Results confirm the presence of novel haemoplasma strains in bathyergid species from South Africa and emphasise the need for expanded studies on haemoplama prevalence, diversity, and transmission routes in other small mammal species from this biodiverse region.


Subject(s)
Mole Rats/genetics , Mycoplasma/isolation & purification , Animals , Mole Rats/microbiology , Mycoplasma/genetics , RNA, Ribosomal, 16S/genetics , Ribonuclease P/genetics , South Africa
3.
Parasit Vectors ; 13(1): 570, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176846

ABSTRACT

BACKGROUND: Rattus spp. are frequently implicated as key reservoir hosts for leptospirosis, one of the most common, but neglected, bacterial zoonoses in the world. Although leptospirosis is predicted to be a significant public health threat in Africa, studies from the continent are limited. METHODS: Rattus spp. (n = 171) were sampled (January-May 2016) across the City of Johannesburg, South Africa's largest inland metropole. Rattus spp. genetic diversity was evaluated by full length (1140 bp) cyt b sequencing of 42 samples. For comparison, a further 12 Rattus norvegicus samples collected in Cape Town, South Africa's largest coastal metropole, were also genotyped. Leptospira infections were identified and genotyped using real-time PCR and multi-locus (lfb1, secY and lipL41) DNA sequencing. RESULTS: Five R. norvegicus haplotypes were identified across Johannesburg, four of which have not previously been detected in South Africa, and one in Cape Town. Across Johannesburg we identified a Leptospira spp. infection prevalence of 44% (75/171) and noted significant differences in the prevalence between administrative regions within the metropole. Multi-locus sequence analyses identified a clonal genotype consistent with L. borgpetersenii serogroup Javanica (serovar Ceylonica). DISCUSSION: The prevalence of infection identified in this study is amongst the highest detected in Rattus spp. in similar contexts across Africa. Despite the complex invasion history suggested by the heterogeneity in R. norvegicus haplotypes identified in Johannesburg, a single L. borgpetersenii genotype was identified in all infected rodents. The lack of L. interrogans in a rodent community dominated by R. norvegicus is notable, given the widely recognised host-pathogen association between these species and evidence for L. interrogans infection in R. norvegicus in Cape Town. It is likely that environmental conditions (cold, dry winters) in Johannesburg may limit the transmission of L. interrogans. Spatial heterogeneity in prevalence suggest that local factors, such as land use, influence disease risk in the metropole. CONCLUSIONS: In South Africa, as in other African countries, leptospirosis is likely underdiagnosed. The high prevalence of infection in urban rodents in Johannesburg suggest that further work is urgently needed to understand the potential public health risk posed by this neglected zoonotic pathogen.


Subject(s)
Leptospira/genetics , Leptospirosis/microbiology , Rodent Diseases/microbiology , Animals , Cities/epidemiology , Disease Reservoirs/microbiology , Genotype , Haplotypes , Humans , Leptospira/classification , Leptospirosis/epidemiology , Multilocus Sequence Typing , Prevalence , Rats/classification , Rats/genetics , Rodent Diseases/epidemiology , Sequence Analysis, DNA , Serogroup , South Africa/epidemiology , Zoonoses/epidemiology , Zoonoses/microbiology
4.
Med Mycol ; 56(4): 510-513, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-28992307

ABSTRACT

The ecological niche of Emergomyces africanus (formerly Emmonsia species), a dimorphic fungus that causes an AIDS-related mycosis in South Africa, is unknown. We hypothesized that natural infection with E. africanus occurs in wild small mammals. Using molecular detection with primers specific for E. africanus, we examined 1402 DNA samples from 26 species of mole-rats, rodents, and insectivores trapped in South Africa that included 1324 lung, 37 kidney, and 41 liver specimens. DNA of E. africanus was not detected in any animals. We conclude that natural infection of wild small mammals in South Africa with E. africanus has not been proven.


Subject(s)
Mycoses/microbiology , Onygenales/genetics , Animals , DNA, Ribosomal Spacer/genetics , Humans , Mammals/microbiology , Microbiological Techniques , Onygenales/isolation & purification , South Africa
5.
Ecohealth ; 14(4): 662-674, 2017 12.
Article in English | MEDLINE | ID: mdl-29094221

ABSTRACT

Global reports of emergent pathogens in humans have intensified efforts to identify wildlife reservoirs. Subterranean mammals, such as bathyergid mole rats, are largely overlooked, despite their high-level exposure to soil-dwelling microbes. Initial assessment of bathyergid reservoir potential was determined using a broad-range 16S rRNA PCR approach, which revealed an 83% PCR-positivity for the 234 bathyergid lung samples evaluated. The presence of the Bacillus cereus complex, a ubiquitous bacterial assemblage, containing pathogenic and zoonotic species, was confirmed through nucleotide sequencing, prior to group- and species-specific PCR sequencing. The latter allowed for enhanced placement and prevalence estimations of Bacillus in four bathyergid species sampled across a range of transformed landscapes in the Western Cape Province, South Africa. Two novel Bacillus strains (1 and 2) identified on the basis of the concatenated 16S rRNA-groEL-yeaC data set (2066 nucleotides in length), clustered with B. mycoides (ATCC 6462) and B. weihenstephanensis (WSBC 10204), within a well-supported monophyletic lineage. The levels of co-infection, evaluated with a groEL strain-specific assay, developed specifically for this purpose, were high (71%). The overall Bacillus presence of 17.95% (ranging from 0% for Georychus capensis to 45.35% for Bathyergus suillus) differed significantly between host species (χ2 = 69.643; df = 3; P < 0.05), being significantly higher in bathyergids sampled near an urban informal settlement (χ2 = 70.245; df = 3; P < 0.05). The results highlight the sentinel potential of soil-dwelling mammals for monitoring anthropogenically introduced, opportunistic pathogens and the threats they pose to vulnerable communities, particularly in the developing world.


Subject(s)
Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Disease Reservoirs/microbiology , Rats/microbiology , Animals , DNA, Bacterial , Developing Countries , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Soil Microbiology , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...