Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open Sport Exerc Med ; 4(1): e000303, 2018.
Article in English | MEDLINE | ID: mdl-29955372

ABSTRACT

BACKGROUND: We are developing since 2010 with Thales and the Fédération Française de Rugby (FFR) M-Rex, a new kind of rugby scrum simulator. The study questioned whether it could improve safety and protect players from injury by using it as a tool for training/coaching the packs. AIM: To explore the anticipatory postural adjustments (APAs) during the engagement of the ruck, because these predictive neck and back muscles contractions protect the spinal cord at the time of impacts, which is crucial to prevent injuries. METHODS: We quantified the kinematics and the EMG activities in high-level front row players during their initial engagement, when scrummaging with M-Rex. All studies were performed with one player interacting with the robot, at first, and then with the three players acting together. RESULTS: For most of the tested high-level players, the APA latencies were highly variable from trial to trial even though the engagement resulted in similar impacts. At time, the onset of the electromyography activity in the neck and back muscles showed latencies inferior to 50 ms or even close to zero prior to the impact, which rendered muscle contractions inefficient as APAs. We were also unable to identify clear muscular synergies underlying the APAs because of their great variability on a trial-to-trial basis. Finally, the APAs were not related to the amplitude of the ensuing impact and were asymmetric in most trials. All these characteristics held true, whether the player was playing alone or with two other frontline players. CONCLUSION: Our result suggest that APAs should be systematically tested in high-level rugby players as well as in any high-level sport men at risk of neck and back injuries. Because APAs can be efficiently trained, our study paves the way to design individual position-specific injury prevention programme.

2.
BMJ Open Sport Exerc Med ; 4(1): e000407, 2018.
Article in English | MEDLINE | ID: mdl-30687510

ABSTRACT

AIM: Using M-Rex, a rugby scrum simulator, we developed tools to describe scrummaging forces and to prevent accident. METHODS: We tested three groups of frontliners at national level. The simulator was passive or responded to the player(s) to simulate the reaction of opposite players. Sensors in the beam measured the force exerted by each of the players. Their movements were recorded with a Codamotion system. RESULTS: The force signals exhibited two phases: a transient phase, similar to a damped sinusoid with a dominant frequency around 5 Hz when the players scrummaged alone and with a wider range when playing together; then, a sustained phase could be decomposed in two components: a DC component remained stable whether frontliners played alone or together. In contrast, its variability decreased when the frontliners played together compared with when they played alone. As for the oscillations, the frontliners exhibited a large variability in their ability to synchronise their efforts during the sustained phase. The synchronisation between the hooker and the props was quite efficient, while it was always missing between two props. Finally, we were able to study postural readjustments and their synchronisation among players during the sustained phase. CONCLUSION: This study shows that by using adequate methods, it is possible to assess the frontline collective intelligence. These findings may pave the way for innovative methods of training to improve players' collective behaviour.

SELECTION OF CITATIONS
SEARCH DETAIL
...