Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 569(7757): E9, 2019 May.
Article in English | MEDLINE | ID: mdl-31073227

ABSTRACT

Change history: In this Letter, the y-axis values in Fig. 3f should go from 4 to -8 (rather than from 4 to -4), the y-axis values in Fig. 3h should appear next to the major tick marks (rather than the minor ticks), and in Fig. 1b, the arrows at the top and bottom of the electron-scale current sheet were going in the wrong direction; these errors have been corrected online.

2.
Phys Rev E ; 99(4-1): 043204, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108651

ABSTRACT

The electron diffusion region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental difficulties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric Multiscale (MMS) spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multipoint measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.

3.
Nature ; 557(7704): 202-206, 2018 05.
Article in English | MEDLINE | ID: mdl-29743689

ABSTRACT

Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

4.
Phys Rev Lett ; 120(12): 125101, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694094

ABSTRACT

Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

5.
Phys Rev Lett ; 105(16): 165002, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21230981

ABSTRACT

We report in situ observations of high-frequency electrostatic waves in the vicinity of a reconnection site in the Earth's magnetotail. Two different types of waves are observed inside an ion-scale magnetic flux rope embedded in a reconnecting current sheet. Electron holes (weak double layers) produced by the Buneman instability are observed in the density minimum in the center of the flux rope. Higher frequency broadband electrostatic waves with frequencies extending up to f(pe) are driven by the electron beam and are observed in the denser part of the rope. Our observations demonstrate multiscale coupling during the reconnection: Electron-scale physics is induced by the dynamics of an ion-scale flux rope embedded in a yet larger-scale magnetic reconnection process.

6.
Phys Rev Lett ; 97(20): 205003, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155688

ABSTRACT

We present multipoint spacecraft observations at the dayside magnetopause of a magnetic reconnection separatrix region. This region separates two plasmas with significantly different temperatures and densities, at a large distance from the X line. We identify which terms in the generalized Ohm's law balance the observed electric field throughout the separatrix region. The electric field inside a thin approximately c/omega pi Hall layer is balanced by the j x B/ne term while other terms dominate elsewhere. On the low density side of the region we observe a density cavity which forms due to the escape of magnetospheric electrons along the newly opened field lines. The perpendicular electric field inside the cavity constitutes a potential jump of several kV. The observed potential jump and field aligned currents can be responsible for strong aurora.

7.
Phys Rev Lett ; 93(10): 105001, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15447408

ABSTRACT

Magnetic reconnection leads to energy conversion in large volumes in space but is initiated in small diffusion regions. Because of the small sizes of the diffusion regions, their crossings by spacecraft are rare. We report four-spacecraft observations of a diffusion region encounter at the Earth's magnetopause that allow us to reliably distinguish spatial from temporal features. We find that the diffusion region is stable on ion time and length scales in agreement with numerical simulations. The electric field normal to the current sheet is balanced by the Hall term in the generalized Ohm's law, E(n) approximately jxB/ne.n, thus establishing that Hall physics is dominating inside the diffusion region. The reconnection rate is fast, approximately 0.1. We show that strong parallel currents flow along the separatrices; they are correlated with observations of high-frequency Langmuir/upper hybrid waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...