Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem ; 19(24): 4231-4239, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19763240

ABSTRACT

Modification of iron oxide nanoparticles (NPs) synthesized by high temperature solvothermal routes is carried out using two silanes: (i) N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS) where only one end of the molecule reacts with the surface Fe-OH groups and (ii) 3-(triethoxysilyl)propylsuccinic anhydride (SSA) where both ends are reactive with Fe-OH. Depending on the NP synthesis protocol, the amount of surface OH groups on the NPs may differ, however, for all the cases presented here, the comparatively low OH group density prevents a high density of AHAPS coverage, yielding NP aggregates instead of single particles in aqueous solutions. Alternatively, use of SSA containing two terminal functionalities, anhydride and siloxy, which are both reactive towards the NP surface, results in the formation of discrete dense polymeric shells, providing stability of individual NPs in water. The mechanism of the SSA shell formation is discussed. The evolution of the chemical transformations leads to shells of different thickness and density, yet this evolution can be halted by hydrolysis, after which the NPs are water soluble, negatively charged and exhibit excellent stability in aqueous media.

2.
Nano Lett ; 7(8): 2407-16, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17630812

ABSTRACT

Efficient encapsulation of functionalized spherical nanoparticles by viral protein cages was found to occur even if the nanoparticle is larger than the inner cavity of the native capsid. This result raises the intriguing possibility of reprogramming the self-assembly of viral structural proteins. The iron oxide nanotemplates used in this work are superparamagnetic, with a blocking temperature of about 250 K, making these virus-like particles interesting for applications such as magnetic resonance imaging and biomagnetic materials. Another novel feature of the virus-like particle assembly described in this work is the use of an anionic lipid micelle coat instead of a molecular layer covalently bound to the inorganic nanotemplate. Differences between the two functionalization strategies are discussed.


Subject(s)
Crystallization/methods , Ferric Compounds/chemistry , Magnetics , Nanostructures/chemistry , Nanostructures/ultrastructure , Virion/chemistry , Virion/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...