Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Oper Dent ; 49(3): 300-310, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632862

ABSTRACT

OBJECTIVES: The depth of cure using blue-light photocuring units (BL) is limited by tooth structure and qualities of the restorative material through which the activating wavelength must pass. Recent developments incorporate an infrared (IR) activated upconversion (UC) fluorescence of a lining agent filled with nanocrystals of NaYF4 and doped with YB+3 and Tm+3 that emit both blue and violet light locally at the interface of the liner and restorative resin. The purpose of this study was to evaluate the BL and 975 nm infrared (IR) light power transmission through dental tissues and restorative materials. METHODS AND MATERIALS: Power transmissions of the IR laser (975 nm) and a monowave blue-only light-curing unit (Bluephase 16i) through dental tissues (enamel, dentin, and enamel/dentin junction, or DEJ), eight (8) various dental resin composites, and eight (8) dental ceramics, each at four thicknesses (1, 2, 3 and 4 mm) were evaluated (n=5) using a thermopile sensor (PM10, Coherent Inc) connected to a laser power meter (Fieldmate, Coherent Inc). Power transmission values of each light source and restorative material were subjected to analysis of variance and Tukey test at a pre-set alpha of 0.05. RESULTS: A linear correlation (r=0.9884) between the supplied current and emitted IR power of the laser diode was found, showing no statistical power reduction with increased distances (collimated beam). For tooth tissues, the highest power transmissions for both light sources were observed using 1.0 mm enamel while the lowest values were found for 2.0 mm dentin and an association of 2.0 mm DEJ and 1.0 mm dentin. The only group where IR demonstrated significantly higher transmission when compared to BL was 1.0 mm enamel. For all resin composites and dental ceramics, increased thickness resulted in a reduction of IR power transmission (except for EverX Posterior fiber-reinforced composite and e.max HT ceramic). IR resulted in higher transmission through all resin composites, except for Tetric EvoCeram White. The highest BL transmission was observed for SDR Flow, at all thicknesses. Higher IR/BL ratios were observed for EverX Posterior, Herculite Ultra, and Lava Ultimate, while the lowest ratio was observed for Tetric EvoCeram White. Reduced translucency shades within the same material resulted in lower power ratio values, especially for BL transmission. Higher IR/BL ratios were observed for e.Max LT, VitaVM7 Base Dentin, and e.max CAD HT, while the lowest values were found for VitaVM7 Enamel and Paradigm C. CONCLUSION: IR power transmission through enamel was higher when compared to blue light, while no difference was observed for dentin. The power transmission of IR was higher than BL for resin composites, except for a high value and low chroma shade. Fiber-reinforced resin composite demonstrated the highest IR/BL power transmission ratio. A greater IR/BL ratio was observed for lower translucency ceramics when compared to high translucency.


Subject(s)
Composite Resins , Curing Lights, Dental , Dental Materials , Infrared Rays , Composite Resins/chemistry , Humans , Dental Materials/chemistry , Dental Restoration, Permanent/methods , Ceramics , Materials Testing , Dentin/radiation effects , Dental Enamel/radiation effects
2.
J Phys Condens Matter ; 28(12): 125601, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-26912417

ABSTRACT

Electron spin resonance (ESR) of diluted Nd(3+) ions in the topologically nontrivial semimetallic (TNSM) YBiPt compound is reported. The cubic YBiPt compound is a non-centrosymmetric half Heusler material which crystallizes in the F43m space group. The low temperature Nd(3+) ESR spectra showed a g-value of 2.66(4) corresponding to a Γ6 cubic crystal field Kramers' doublet ground state. Remarkably, the observed metallic and diffusive (Dysonian) Nd(3+) lineshape presented an unusual dependence with grain size, microwave power, Nd(3+) concentration and temperature. Moreover, the spin dynamic of the localized Nd(3+) ions in YBiPt was found to be characteristic of a phonon-bottleneck regime. It is claimed that, in this regime for YBiPt, phonons are responsible for mediating the diffusion of the microwave energy absorbed at resonance by the Nd(3+) ions to the thermal bath throughout the skin depth (δ ≃ µm). We argue that this is only possible because of the existence of highly mobile conduction electrons inside the skin depth of YBiPt that are strongly coupled to the phonons by spin-orbit coupling. Therefore, our unexpected ESR results point to a coexistence of metallic and insulating behaviors within the skin depth of YBiPt. This scenario is discussed in the light of the TNSM properties of this compound.

3.
J Phys Condens Matter ; 27(25): 255601, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26045483

ABSTRACT

ß-YbAlB4 has become one of the most studied heavy fermion systems since its discovery due to its remarkable physical properties. This system is the first reported Yb-based heavy-fermion superconductor (HFS) for which the low-T superconducting state emerges from a non-fermi-liquid (NFL) normal state associated with quantum criticality Nakatsuji et al 2008 Nature 4 603. Additionally, it presents a striking and unprecedented electron spin resonance (ESR) signal which behaves as a conduction electron spin resonance (CESR) at high temperatures and acquires features of the Yb(3+) local moment ESR at low temperatures. The latter, also named Kondo quasiparticles spin resonance (KQSR), has been defined as a 4f-ce strongly coupled ESR mode that behaves as a local probe of the Kondo quasiparticles in a quantum critical regime, Holanda et al 2011 Phys. Rev. Lett. 107 026402. Interestingly, ß-YbAlB4 possesses a previously known structural variant, namely the α-YbAlB4, phase which is a paramagnetic Fermi liquid (FL) at low temperatures Macaluso et al 2007 Chem. Mater. 19 1918. However, it has been recently suggested that the α-YbAlB4 phase may be tuned to NFL behavior and/or magnetic ordering as the compound is doped with Fe. Here we report ESR studies on the α-Yb1-xFexAlB4 (0 â©½ x â©½ 0.50) series as well as on the reference compound α-LuAlB4. For all measured samples, the observed ESR signal behaves as a CESR in the entire temperature range (10 K â‰² T â‰² 300 K) in clear contrast with what has been observed for ß-YbAlB4. This striking result indicates that the proximity to a quantum critical point is crucial to the occurrence of a KQSR signal.

4.
J Phys Condens Matter ; 26(17): 175501, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24713600

ABSTRACT

Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Gadolinium/chemistry , Indium/chemistry , Models, Chemical , Yttrium/chemistry , Computer Simulation , Electric Conductivity , Electron Transport , Electrons , Materials Testing , Spin Labels
5.
J Phys Condens Matter ; 25(21): 216001, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23628913

ABSTRACT

This work reports on electron spin resonance experiments in oriented single crystals of the hexagonal AlB2 diboride compound (P6/mmm, D16h structure) which display conduction electron spin resonance. The X-band electron spin resonance spectra showed a metallic Dysonian resonance with g-value and intensity independent of temperature. The thermal broadening of the anisotropic electron spin resonance linewidth ΔH tracks the T-dependence of the electrical resistivity below T is approximately equal to 100 K. These results confirm the observation of a conduction electron spin resonance in AlB2 and are discussed in comparison with other boride compounds. Based on our main findings for AlB2 and the calculated electronic structure of similar layered honeycomb-like structures, we conclude that any array of covalent B-B layers potentially results in a conduction electron spin resonance signal. This observation may shed new light on the nature of the non-trivial conduction electron spin resonance-like signals of complex f-electron systems such as ß-YbAlB4.

6.
J Phys Condens Matter ; 23(45): 455701, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22021334

ABSTRACT

The LaIn(3-x)Sn(x) alloy system is composed of superconducting Pauli paramagnets. For LaIn3 the superconducting critical temperature T(c) is approximately 0.7 K and it shows an oscillatory dependence as a function of Sn substitution, presenting its highest value T(c) ≈ 6.4 K for the LaSn3 end member. The superconducting state of these materials was characterized as being of the conventional type. We report our results for Gd3+ electron spin resonance measurements in the LaIn(3-x)Sn(x) compounds as a function of x. We show that the effective exchange interaction parameter J(fs) between the Gd3+ 4f local moment and the s-like conduction electrons is almost unchanged by Sn substitution and observe microscopically that LaSn3 is a conventional superconductor.

7.
Phys Rev Lett ; 107(2): 026402, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21797626

ABSTRACT

Electron spin resonance (ESR) can probe conduction electrons (CE) and local moment (LM) spin systems in different materials. A CE spin resonance (CESR) is observed in metallic systems based on light elements or with enhanced Pauli susceptibility. LM ESR can be seen in compounds with paramagnetic ions and localized d or f electrons. Here we report a remarkable and unprecedented ESR signal in the heavy-fermion superconductor ß-YbAlB4 [S. Nakatsuji et al., Nature Phys. 4, 603 (2008)] which behaves as a CESR at high temperatures and acquires characteristics of the Yb³âº LM ESR at low temperature. This dual behavior strikes as an in situ unique observation of the Kondo quasiparticles in a quantum critical regime. The proximity to a quantum critical point may favor the appearance of this dual character of the ESR signal in ß-YbAlB4.

8.
J Phys Condens Matter ; 23(20): 206004, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21540502

ABSTRACT

Specific heat, magnetization and electron spin resonance (ESR) data obtained from a self-standing film of the doped plasticized polyaniline (PANI-DB3EPSA)(0.5) are shown. No long range magnetic order has been observed at zero magnetic field, above 2 K. For a magnetic field of 3.3 kOe applied perpendicular to the plane of the film, a clear signature of an induced ordered state can be seen in the specific heat data and ESR also reveals this antiferromagnetic order. An electronic contribution is detected from ESR, magnetization and specific heat; however, for T ≤ 5 K, the specific heat data show the existence of a gap. Magnetization data also show a low temperature dominant Curie behaviour which cannot be seen from ESR, probably due to a very large linewidth, suggesting short range correlations among spin 1/2 polarons.

9.
J Nanosci Nanotechnol ; 11(3): 2126-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21449359

ABSTRACT

The Electron Spin Resonance (ESR) of diluted magnetic ions (MI) of Er3+, Yb3+ and Mn2+ in Ag nanoparticles (NPs) is reported. Monodisperse samples of Ag NPs doped with these MI were synthesized by reducing silver nitrate and MI-oxides. This simple method can be extended to all rare-earths. The measurements of the g-values and hyperfine splittings indicates that the MI are located at cubic sites in the Ag:MI NPs. The ESR spectra show that there is no g-shift and Korringa-relaxation due to the exchange interaction between the MI and the conduction electrons, suggesting that the exchange interaction is absent in the Ag:MI NPs. Thus, the nature of this interaction needs to be reexamined at the nanoscale range.


Subject(s)
Colloids/chemistry , Nanostructures/chemistry , Silver/chemistry , Electric Conductivity , Magnetics , Materials Testing , Nanostructures/ultrastructure , Particle Size
10.
J Nanosci Nanotechnol ; 10(9): 5708-14, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133095

ABSTRACT

This paper presents the synthesis and characterization of colloidal NaYF4 and NaYF4:20% Gd lanthanide nanocrystals. The nanoparticles were prepared by chemical route using co-thermolysis of Na(CF3COO), Y(CF3COO)3 and Gd(CF3COO)3 precursor in oleylamine surfactant/phenylether at Ts = 250 degrees C. By tuning the precursor/surfactant molar ratio during the process, it was possible to control the crystalline phase, chemical order and size of the nanocrystals. The nanocrystals were characterized by Transmission Electron Microscopy, Small Angle X-ray Scattering, powder X-ray Diffraction, dc-magnetization and Electron Spin Resonance (ESR) techniques. The ESR experiments show the so called U-spectrum for the Gd3+ ions in bulk counterpart materials, where characteristic powder spectra of cubic and lower crystal field symmetries were observed.

11.
J Phys Condens Matter ; 21(45): 456007, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-21694027

ABSTRACT

This work presents a systematic Raman scattering study and first-principles calculations for the EuB(6) system. Evidence for the presence of an incipient (∼1 × 10(-4) Å) tetragonal symmetry break of its crystalline structure was found. Forbidden Raman modes at ω(fRm(1))∼1170 cm(-1), ω(fRm(2))∼1400 cm(-1), and ω(fRm(3))∼1500  cm(-1) were observed. The tetragonal symmetry of ω(fRm(2)) and ω(fRm(3)) together with spin-polarized first-principles simulations of the structural and magnetic properties fully support such a break of symmetry. Our data and calculations explain the occurrence of ferromagnetism in Eu hexaborides, previously reported.

12.
Phys Rev Lett ; 89(10): 107204, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12225221

ABSTRACT

Neutron-diffraction measurements in LaCrSb3 show a coexistence of ferromagnetic and antiferromagnetic sublattices below T(C)=126 K, with ordered moments of 1.65(4) and 0.49(4)mu(B)/formula unit, respectively (T=10 K), and a spin-reorientation transition at approximately 95 K. No clear peak or step was observed in the specific heat at T(C). Coexisting localized and itinerant spins are suggested.

13.
Phys Rev Lett ; 89(8): 087602, 2002 Aug 19.
Article in English | MEDLINE | ID: mdl-12190500

ABSTRACT

We report the first observation of the field distribution and flux-line lattice (FLL) depinning in the vortex-state (VS) of a type-II superconductor probed by conduction electron spin resonance (CESR). CESR was performed in MgB (2) (T(c) approximately 39 K) at 4.1 GHz (1455 Oe) and 9.5 GHz (3390 Oe). The field distribution, n(H), and a standard deviation of sigma approximately 14 Oe (at 28 K/4.1 GHz and at 7 K/9.5 GHz) were inferred, respectively, from the distortion and broadening of the CESR in the VS. For both frequencies, the FLL depinning temperature was determined.

14.
Phys Rev Lett ; 86(23): 5385-8, 2001 Jun 04.
Article in English | MEDLINE | ID: mdl-11384504

ABSTRACT

The exchange interactions in polycrystalline samples of Ca1-xLaxMnO3 (0.00< or =x< or =0.05) are studied by means of Raman scattering and electron paramagnetic resonance. Dramatic reductions in the spin-phonon interactions and magnetic correlations are observed for La doping levels as small as approximately 2%-3%. These results show that the charge carriers play an important role in the overall exchange coupling in the electron-doped manganites, even at very low doping levels.

15.
17.
Phys Rev B Condens Matter ; 52(21): 15062-15065, 1995 Dec 01.
Article in English | MEDLINE | ID: mdl-9980851
18.
Phys Rev B Condens Matter ; 51(17): 11909-11914, 1995 May 01.
Article in English | MEDLINE | ID: mdl-9977932
20.
Phys Rev B Condens Matter ; 50(20): 14822-14826, 1994 Nov 15.
Article in English | MEDLINE | ID: mdl-9975825
SELECTION OF CITATIONS
SEARCH DETAIL
...