Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Eukaryot Microbiol ; 63(6): 823-833, 2016 11.
Article in English | MEDLINE | ID: mdl-27216143

ABSTRACT

Protozoan parasites of the genus Leishmania adapt to their arthropod and vertebrate hosts through the development of defined life cycle stages. Stage differentiation is triggered by environmental stress factors and has been linked to parasite chaperone activities. Using a null mutant approach we previously revealed important, nonredundant functions of the cochaperone cyclophilin 40 in L. donovani-infected macrophages. Here, we characterized in more detail the virulence defect of cyp40-/- null mutants. In vitro viability assays, infection tests using macrophages, and mixed infection experiments ruled out a defect of cyp40-/- parasites in resistance to oxidative and hydrolytic stresses encountered inside the host cell phagolysosome. Investigation of the CyP40-dependent proteome by quantitative 2D-DiGE analysis revealed up regulation of various stress proteins in the null mutant, presumably a response to compensate for the lack of CyP40. Applying transmission electron microscopy we showed accumulation of vesicular structures in the flagellar pocket of cyp40-/- parasites that we related to a significant increase in exosome production, a phenomenon previously linked to the parasite stress response. Together these data suggest that cyp40-/- parasites experience important intrinsic homeostatic stress that likely abrogates parasite viability during intracellular infection.


Subject(s)
Cyclophilins/deficiency , Leishmania donovani/enzymology , Leishmaniasis, Visceral/parasitology , Protozoan Proteins/genetics , Animals , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Electrophoresis, Gel, Two-Dimensional , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Leishmania donovani/genetics , Leishmania donovani/growth & development , Leishmania donovani/metabolism , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Mutation , Phenotype , Protozoan Proteins/metabolism
2.
Mol Microbiol ; 93(1): 80-97, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24811325

ABSTRACT

During its life cycle, the protozoan pathogen Leishmania donovani is exposed to contrasting environments inside insect vector and vertebrate host, to which the parasite must adapt for extra- and intracellular survival. Combining null mutant analysis with phosphorylation site-specific mutagenesis and functional complementation we genetically tested the requirement of the L. donovani chaperone cyclophilin 40 (LdCyP40) for infection. Targeted replacement of LdCyP40 had no effect on parasite viability, axenic amastigote differentiation, and resistance to various forms of environmental stress in culture, suggesting important functional redundancy to other parasite chaperones. However, ultrastructural analyses and video microscopy of cyp40-/- promastigotes uncovered important defects in cell shape, organization of the subpellicular tubulin network and motility at stationary growth phase. More importantly, cyp40-/- parasites were unable to establish intracellular infection in murine macrophages and were eliminated during the first 24 h post infection. Surprisingly, cyp40-/- infectivity was restored in complemented parasites expressing a CyP40 mutant of the unique S274 phosphorylation site. Together our data reveal non-redundant CyP40 functions in parasite cytoskeletal remodelling relevant for the development of infectious parasites in vitro independent of its phosphorylation status, and provide a framework for the genetic analysis of Leishmania-specific phosphorylation sites and their role in regulating parasite protein function.


Subject(s)
Cyclophilins/genetics , Cyclophilins/metabolism , Leishmania donovani/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Animals , Cytoskeleton/metabolism , Leishmania donovani/ultrastructure , Leishmaniasis, Visceral/parasitology , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Phosphorylation , Stress, Physiological
3.
PLoS Pathog ; 9(8): e1003546, 2013.
Article in English | MEDLINE | ID: mdl-23950716

ABSTRACT

Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome. However, several PEXEL/HT negative exported proteins (PNEPs) indicate that this exportome is incomplete and it remains unknown if and how many further PNEPs exist. Here we report the identification of new PNEPs in the most virulent malaria parasite Plasmodium falciparum. This includes proteins with a domain structure deviating from previously known PNEPs and indicates that PNEPs are not a rare exception. Unexpectedly, this included members of the MSP-7 related protein (MSRP) family, suggesting unanticipated functions of MSRPs. Analyzing regions mediating export of selected new PNEPs, we show that the first 20 amino acids of PNEPs without a classical N-terminal signal peptide are sufficient to promote export of a reporter, confirming the concept that this is a shared property of all PNEPs of this type. Moreover, we took advantage of newly found soluble PNEPs to show that this type of exported protein requires unfolding to move from the parasitophorous vacuole (PV) into the host cell. This indicates that soluble PNEPs, like PEXEL/HT proteins, are exported by translocation across the PV membrane (PVM), highlighting protein translocation in the parasite periphery as a general means in protein export of malaria parasites.


Subject(s)
Cell Membrane/metabolism , Plasmodium falciparum/metabolism , Protein Sorting Signals/physiology , Protozoan Proteins/metabolism , Animals , Cell Membrane/genetics , Mice , Plasmodium falciparum/genetics , Protein Transport/physiology , Protozoan Proteins/genetics
4.
Eur J Immunol ; 43(3): 693-704, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23229763

ABSTRACT

Protection against malaria can be achieved by induction of a strong CD8(+) T-cell response against the Plasmodium circumsporozoite protein (CSP), but most subunit vaccines suffer from insufficient memory responses. In the present study, we analyzed the impact of postimmunization sporozoite challenge on the development of long-lasting immunity. BALB/c mice were immunized by a heterologous prime/boost regimen against Plasmodium berghei CSP that induces a strong CD8(+) T-cell response and sterile protection, which is short-lived. Here, we show that protective immunity is prolonged by a sporozoite challenge after immunization. Repeated challenges induced sporozoite-specific antibodies that showed protective capacity. The numbers of CSP-specific CD8(+) T cells were not substantially enhanced by sporozoite infections; however, CSP-specific memory CD8(+) T cells of challenged mice displayed a higher cytotoxic activity than memory T cells of immunized-only mice. CD4(+) T cells contributed to protection as well; but CD8(+) memory T cells were found to be the central mediator of sterile protection. Based on these data, we suggest that prolonged protective immunity observed after immunization and infection is composed of different antiparasitic mechanisms including CD8(+) effector-memory T cells with increased cytotoxic activity as well as CD4(+) memory T cells and neutralizing antibodies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Humoral , Immunologic Memory , Plasmodium berghei/immunology , Sporozoites/immunology , Animals , Antibodies, Protozoan/immunology , Antibody Specificity/immunology , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Immunization , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Mice , Mice, Inbred BALB C , Phenotype
5.
Cell Microbiol ; 13(6): 836-45, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21371233

ABSTRACT

Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.


Subject(s)
Erythrocytes/enzymology , Erythrocytes/parasitology , MAP Kinase Kinase 1/metabolism , Plasmodium falciparum/pathogenicity , Signal Transduction , p21-Activated Kinases/metabolism , Animals , Antimalarials/pharmacology , Erythrocytes/metabolism , Humans , Inhibitory Concentration 50 , Plasmodium berghei/pathogenicity , Protein Kinase Inhibitors/pharmacology
6.
Biotechnol J ; 4(6): 895-902, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19492329

ABSTRACT

Fluorescent proteins have proven to be important tools for in vitro live imaging of parasites and for imaging of parasites within the living host by intravital microscopy. We observed that a red fluorescent transgenic malaria parasite of rodents, Plasmodium berghei-RedStar, is suitable for in vitro live imaging experiments but bleaches rapidly upon illumination in intravital imaging experiments using mice. We have therefore generated two additional transgenic parasite lines expressing the novel red fluorescent proteins tdTomato and mCherry, which have been reported to be much more photostable than first- and second-generation red fluorescent proteins including RedStar. We have compared all three red fluorescent parasite lines for their use in in vitro live and intravital imaging of P. berghei blood and liver parasite stages, using both confocal and wide-field microscopy. While tdTomato bleached almost as rapidly as RedStar, mCherry showed improved photostability and was bright in all experiments performed.


Subject(s)
Fluorescent Dyes/metabolism , Luminescent Proteins/metabolism , Plasmodium berghei/metabolism , Animals , Animals, Genetically Modified , Cell Line, Tumor , Data Interpretation, Statistical , Female , Fluorescent Dyes/chemistry , Humans , Liver/parasitology , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Mice , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Plasmodium berghei/genetics , Red Fluorescent Protein
7.
Protist ; 160(1): 51-63, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19026596

ABSTRACT

The rodent malaria parasite Plasmodium berghei develops in hepatocytes within 48-52h from a single sporozoite into up to 20,000 daughter parasites, so-called merozoites. The cellular and molecular details of this extensive proliferation are still largely unknown. Here we have used a transgenic, RFP-expressing P. berghei parasite line and molecular imaging techniques including intravital microscopy to decipher various aspects of parasite development within the hepatocyte. In late schizont stages, MSP1 is expressed and incorporated into the parasite plasma membrane that finally forms the membrane of developing merozoites by continuous invagination steps. We provide first evidence for activation of a verapamil-sensitive Ca(2+) channel in the plasma membrane of liver stage parasites before invagination occurs. During merozoite formation, the permeability of the parasitophorous vacuole membrane changes considerably before it finally becomes completely disrupted, releasing merozoites into the host cell cytoplasm.


Subject(s)
Cell Membrane/metabolism , Malaria/parasitology , Plasmodium berghei/growth & development , Vacuoles/metabolism , Animals , Calcium Channels/metabolism , Cell Line , Cell Membrane Permeability , Hepatocytes/parasitology , Humans , Liver/parasitology , Merozoites/growth & development , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence/methods , Rats , Sporozoites/growth & development , Verapamil
8.
Cell Host Microbe ; 4(6): 567-78, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19064257

ABSTRACT

The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.


Subject(s)
Liver/parasitology , Plasmodium berghei/pathogenicity , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Animals , Antimalarials/pharmacology , Gene Deletion , Malaria/parasitology , Mice , Mice, Inbred C57BL , Mutagenesis, Insertional , Parasitemia , Plasmodium berghei/enzymology , Plasmodium berghei/growth & development , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Protozoan Proteins/genetics , Triclosan/pharmacology
9.
Science ; 313(5791): 1287-90, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16888102

ABSTRACT

The merozoite stage of the malaria parasite that infects erythrocytes and causes the symptoms of the disease is initially formed inside host hepatocytes. However, the mechanism by which hepatic merozoites reach blood vessels (sinusoids) in the liver and escape the host immune system before invading erythrocytes remains unknown. Here, we show that parasites induce the death and the detachment of their host hepatocytes, followed by the budding of parasite-filled vesicles (merosomes) into the sinusoid lumen. Parasites simultaneously inhibit the exposure of phosphatidylserine on the outer leaflet of host plasma membranes, which act as "eat me" signals to phagocytes. Thus, the hepatocyte-derived merosomes appear to ensure both the migration of parasites into the bloodstream and their protection from host immunity.


Subject(s)
Cellular Structures/parasitology , Hepatocytes/parasitology , Liver/blood supply , Malaria/parasitology , Plasmodium berghei/pathogenicity , Animals , Blood Vessels/parasitology , Calcium/metabolism , Cell Adhesion , Cell Death , Cell Line, Tumor , Cell Membrane/metabolism , Cellular Structures/ultrastructure , Endothelial Cells/parasitology , Erythrocytes/parasitology , Hepatocytes/physiology , Hepatocytes/ultrastructure , Humans , Ionomycin/pharmacology , Liver/parasitology , Mice , Mice, Inbred C57BL , Phagocytosis , Phosphatidylserines/metabolism , Plasmodium berghei/growth & development , Sporozoites/growth & development , Vacuoles/parasitology , Vacuoles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...