Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 10(10): 2767-2771, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34587446

ABSTRACT

To better understand cellular life, it is essential to decipher the contribution of individual components and their interactions. Minimal genomes are an important tool to investigate these interactions. Here, we provide a database of 105 fully annotated genomes of a series of strains with sequential deletion steps of the industrially relevant model bacterium Bacillus subtilis starting with the laboratory wild type strain B. subtilis 168 and ending with B. subtilis PG38, which lacks approximately 40% of the original genome. The annotation is supported by sequencing of key intermediate strains as well as integration of literature knowledge for the annotation of the deletion scars and their potential effects. The strain compendium presented here represents a comprehensive genome library of the entire MiniBacillus project. This resource will facilitate the more effective application of the different strains in basic science as well as in biotechnology.


Subject(s)
Bacillus subtilis/genetics , Genome, Bacterial
2.
Nucleic Acids Res ; 47(10): 5231-5242, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30957856

ABSTRACT

DNA topoisomerases play essential roles in chromosome organization and replication. Most bacteria possess multiple topoisomerases which have specialized functions in the control of DNA supercoiling or in DNA catenation/decatenation during recombination and chromosome segregation. DNA topoisomerase I is required for the relaxation of negatively supercoiled DNA behind the transcribing RNA polymerase. Conflicting results have been reported on the essentiality of the topA gene encoding topoisomerase I in the model bacterium Bacillus subtilis. In this work, we have studied the requirement for topoisomerase I in B. subtilis. All stable topA mutants carried different chromosomal amplifications of the genomic region encompassing the parEC operon encoding topoisomerase IV. Using a fluorescent amplification reporter system we observed that each individual topA mutant had acquired such an amplification. Eventually, the amplifications were replaced by a point mutation in the parEC promoter region which resulted in a fivefold increase of parEC expression. In this strain both type I topoisomerases, encoded by topA and topB, were dispensable. Our results demonstrate that topoisomerase IV at increased expression is necessary and sufficient to take over the function of type 1A topoisomerases.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , DNA Topoisomerase IV/metabolism , DNA Topoisomerases, Type I/metabolism , Bacterial Proteins/metabolism , Chromosomes, Bacterial , DNA Replication , DNA, Bacterial/genetics , DNA, Superhelical/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Genome, Bacterial , Mutation , Phenotype , Point Mutation , Promoter Regions, Genetic
3.
Metab Eng ; 45: 171-179, 2018 01.
Article in English | MEDLINE | ID: mdl-29242163

ABSTRACT

Bacteria are able to prioritize preferred carbon sources from complex mixtures. This is achieved by the regulatory phenomenon of carbon catabolite repression. To allow the simultaneous utilization of multiple carbon sources and to prevent the time-consuming adaptation to each individual nutrient in biotechnological applications, mutants lacking carbon catabolite repression can be used. However, such mutants often exhibit pleiotropic growth defects. We have isolated and characterized mutations that overcome the growth defect of Bacillus subtilis ccpA mutants lacking the major regulator of catabolite repression, in particular their glutamate auxotrophy. Here we show, that distinct mutations affecting the essential DNA topoisomerase I (TopA) cause glutamate prototrophy of the ccpA mutant. These suppressing variants of the TopA enzyme exhibit increased activity resulting in enhanced relaxation of the DNA. Reduced DNA supercoiling results in enhanced expression of the gltAB operon encoding the biosynthetic glutamate synthase. This is achieved by a significant re-organization of the global transcription network accompanied by re-routing of metabolism, which results in inactivation of the glutamate dehydrogenase. Our results provide a link between DNA topology, the global transcriptional network, and glutamate metabolism and suggest that specific topA mutants may be well suited for biotechnological purposes.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Catabolite Repression/genetics , Cyclic AMP Receptor Protein/deficiency , DNA, Bacterial , Mutation , Transcription, Genetic/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic AMP Receptor Protein/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
4.
Microb Biotechnol ; 10(5): 1259-1263, 2017 09.
Article in English | MEDLINE | ID: mdl-28772004

ABSTRACT

The United Nations' Sustainable Development Goals define important challenges for the prosperous development of mankind. To reach several of these goals, among them the production of value-added compounds, improved economic and ecologic balance of production processes, prevention of climate change and protection of ecosystems, the use of engineered bacteria can make valuable contributions. We discuss the strategies for genome engineering and how they can be applied to meet the United Nations' goals for sustainable development.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Genome, Bacterial , Climate Change , Conservation of Natural Resources , Metabolic Engineering , United Nations
5.
Environ Microbiol Rep ; 9(3): 279-289, 2017 06.
Article in English | MEDLINE | ID: mdl-28294562

ABSTRACT

Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Glutamate Synthase/genetics , Glutamic Acid/metabolism , Repressor Proteins/genetics , Trans-Activators/genetics , Bacillus subtilis/growth & development , Base Sequence , Gene Amplification/genetics , Gene Dosage/genetics , Promoter Regions, Genetic/genetics
6.
Genome Res ; 27(2): 289-299, 2017 02.
Article in English | MEDLINE | ID: mdl-27965289

ABSTRACT

Understanding cellular life requires a comprehensive knowledge of the essential cellular functions, the components involved, and their interactions. Minimized genomes are an important tool to gain this knowledge. We have constructed strains of the model bacterium, Bacillus subtilis, whose genomes have been reduced by ∼36%. These strains are fully viable, and their growth rates in complex medium are comparable to those of wild type strains. An in-depth multi-omics analysis of the genome reduced strains revealed how the deletions affect the transcription regulatory network of the cell, translation resource allocation, and metabolism. A comparison of gene counts and resource allocation demonstrates drastic differences in the two parameters, with 50% of the genes using as little as 10% of translation capacity, whereas the 6% essential genes require 57% of the translation resources. Taken together, the results are a valuable resource on gene dispensability in B. subtilis, and they suggest the roads to further genome reduction to approach the final aim of a minimal cell in which all functions are understood.


Subject(s)
Bacillus subtilis/genetics , Genome, Bacterial/genetics , Transcription, Genetic , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Gene Regulatory Networks/genetics , Genes, Essential/genetics
7.
Microbiol Mol Biol Rev ; 80(4): 955-987, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27681641

ABSTRACT

Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.

8.
Genome Announc ; 4(4)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27469946

ABSTRACT

Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICEBs1 has most likely undergone self-excision in B. subtilis ∆6.

9.
Metab Eng ; 29: 196-207, 2015 May.
Article in English | MEDLINE | ID: mdl-25777134

ABSTRACT

Until now, pyridoxine (PN), the most commonly supplemented B6 vitamer for animals and humans, is chemically synthesized for commercial purposes. Thus, the development of a microbial fermentation process is of great interest for the biotech industry. Recently, we constructed a Bacillus subtilis strain that formed significant amounts of PN via a non-native deoxyxylulose 5'-phosphate-(DXP)-dependent vitamin B6 pathway. Here we report the optimization of the condensing reaction of this pathway that consists of the 4-hydroxy-l-threonine-phosphate dehydrogenase PdxA, the pyridoxine 5'-phosphate synthase PdxJ and the native DXP synthase, Dxs. To allow feeding of high amounts of 4-hydroxy-threonine (4-HO-Thr) that can be converted to PN by B. subtilis overexpressing PdxA and PdxJ, we first adapted the bacteria to tolerate the antimetabolite 4-HO-Thr. The adapted bacteria produced 28-34mg/l PN from 4-HO-Thr while the wild-type parent produced only 12mg/l PN. Moreover, by expressing different pdxA and pdxJ alleles in the adapted strain we identified a better combination of PdxA and PdxJ enzymes than reported previously, and the resulting strain produced 65mg/l PN. To further enhance productivity mutants were isolated that efficiently take up and convert deoxyxylulose (DX) to DXP, which is incorporated into PN. Although these mutants were very efficient to convert low amount of exogenous DX, at higher DX levels they performed only slightly better. The present study uncovered several enzymes with promiscuous activity and it revealed that host metabolic pathways compete with the heterologous pathway for 4-HO-Thr. Moreover, the study revealed that the B. subtilis genome is quite flexible with respect to adaptive mutations, a property, which is very important for strain engineering.


Subject(s)
Antimetabolites/metabolism , Bacillus subtilis , Metabolic Engineering , Pyridoxine/biosynthesis , Threonine/analogs & derivatives , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Carbohydrate Dehydrogenases/biosynthesis , Carbohydrate Dehydrogenases/genetics , Oxidoreductases/biosynthesis , Oxidoreductases/genetics , Threonine/biosynthesis
10.
Genome Announc ; 3(2)2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25767229

ABSTRACT

Bacillus subtilis 3NA reaches high cell densities during fed-batch fermentation and is an interesting target for further optimization as a production strain. Here, we announce the full genome of B. subtilis 3NA. The presence of specific Bacillus subtilis 168 and W23 genetic features suggests that 3NA is a hybrid of these strains.

11.
Microbiology (Reading) ; 160(Pt 11): 2341-2351, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25092907

ABSTRACT

Investigation of essential genes, besides contributing to understanding the fundamental principles of life, has numerous practical applications. Essential genes can be exploited as building blocks of a tightly controlled cell 'chassis'. Bacillus subtilis and Escherichia coli K-12 are both well-characterized model bacteria used as hosts for a plethora of biotechnological applications. Determination of the essential genes that constitute the B. subtilis and E. coli minimal genomes is therefore of the highest importance. Recent advances have led to the modification of the original B. subtilis and E. coli essential gene sets identified 10 years ago. Furthermore, significant progress has been made in the area of genome minimization of both model bacteria. This review provides an update, with particular emphasis on the current essential gene sets and their comparison with the original gene sets identified 10 years ago. Special attention is focused on the genome reduction analyses in B. subtilis and E. coli and the construction of minimal cell factories for industrial applications.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Escherichia coli/genetics , Genes, Essential , Genome, Bacterial , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Industrial Microbiology , Metabolic Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...