Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 18(14): 3912-23, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22781553

ABSTRACT

PURPOSE: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component. EXPERIMENTAL DESIGN: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148. RESULTS: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed. CONCLUSIONS: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial.


Subject(s)
Antineoplastic Agents/administration & dosage , Neoplasms , Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase Inhibitors/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
2.
Cancer Sci ; 103(3): 522-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22181674

ABSTRACT

A ubiquitously expressed chaperone, heat shock protein 90 (HSP90) is of considerable interest as an oncology target because tumor cells and oncogenic proteins are acutely dependent on its activity. AT13387 (2,4-dihydroxy-5-isopropyl-phenyl)-[5-(4-methyl-piperazin-1-ylmethyl)-1,3-dihydro-isoindol-2-yl] methanone, l-lactic acid salt) a novel, high-affinity HSP90 inhibitor, which is currently being clinically tested, has shown activity against a wide array of tumor cell lines, including lung cancer cell lines. This inhibitor has induced the degradation of specific HSP90 client proteins for up to 7 days in tumor cell lines in vitro. The primary driver of cell growth (mutant epidermal growth factor receptors) was particularly sensitive to HSP90 inhibition. The long duration of client protein knockdown and suppression of phospho-signaling seen in vitro after treatment with AT13387 was also apparent in vivo, with client proteins and phospho-signaling suppressed for up to 72 h in xenograft tumors after treatment with a single dose of AT13387. Pharmacokinetic analyses indicated that while AT13387 was rapidly cleared from blood, its retention in tumor xenografts was markedly extended, and it was efficacious in a range of xenograft models. AT13387's long duration of action enabled, in particular, its efficacious once weekly administration in human lung carcinoma xenografts. The use of longer-acting HSP90 inhibitors, such as AT13387, on less frequent dosing regimens has the potential to maintain antitumor efficacy as well as minimize systemic exposure and unwanted effects on normal tissues.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoindoles/pharmacology , Lung Neoplasms/drug therapy , Animals , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Humans , Lung Neoplasms/metabolism , Male , Mice , Mice, Nude , Xenograft Model Antitumor Assays
3.
Blood ; 116(12): 2089-95, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20548094

ABSTRACT

Despite promising clinical results from imatinib mesylate and second-generation ABL tyrosine kinase inhibitors (TKIs) for most BCR-ABL(+) leukemia, BCR-ABL harboring the mutation of threonine 315 to isoleucine (BCR-ABL/T315I) is not targeted by any of these agents. We describe the in vitro and in vivo effects of AT9283 (1-cyclopropyl-3[5-morpholin-4yl methyl-1H-benzomidazol-2-yl]-urea), a potent inhibitor of several protein kinases, including Aurora A, Aurora B, Janus kinase 2 (JAK2), JAK3, and ABL on diverse imatinib-resistant BCR-ABL(+) cells. AT9283 showed potent antiproliferative activity on cells transformed by wild-type BCR-ABL and BCR-ABL/T315I. AT9283 inhibited proliferation in a panel of BaF3 and human BCR-ABL(+) cell lines both sensitive and resistant to imatinib because of a variety of mechanisms. In BCR-ABL(+) cells, we confirmed inhibition of substrates of both BCR-ABL (signal transducer and activator of transcription-5) and Aurora B (histone H3) at physiologically achievable concentrations. The in vivo effects of AT9283 were examined in several mouse models engrafted either subcutaneously or intravenously with BaF3/BCR-ABL, human BCR-ABL(+) cell lines, or primary patient samples expressing BCR-ABL/T315I or glutamic acid 255 to lysine, another imatinib-resistant mutation. These data together support further clinical investigation of AT9283 in patients with imatinib- and second-generation ABL TKI-resistant BCR-ABL(+) cells, including T315I.


Subject(s)
Benzimidazoles/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Urea/analogs & derivatives , Animals , Antineoplastic Agents , Benzamides , Benzimidazoles/therapeutic use , Cell Proliferation/drug effects , Drug Delivery Systems , Drug Resistance, Neoplasm , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Neoplasm Transplantation , Neoplasms, Experimental/drug therapy , Piperazines/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Urea/pharmacology , Urea/therapeutic use
4.
Mol Cancer Ther ; 9(5): 1100-10, 2010 May.
Article in English | MEDLINE | ID: mdl-20423992

ABSTRACT

The serine/threonine kinase AKT plays a pivotal role in signal transduction events involved in malignant transformation and chemoresistance and is an attractive target for the development of cancer therapeutics. Fragment-based lead discovery, combined with structure-based drug design, has recently identified AT7867 as a novel and potent inhibitor of both AKT and the downstream kinase p70 S6 kinase (p70S6K) and also of protein kinase A. This ATP-competitive small molecule potently inhibits both AKT and p70S6K activity at the cellular level, as measured by inhibition of GSK3beta and S6 ribosomal protein phosphorylation, and also causes growth inhibition in a range of human cancer cell lines as a single agent. Induction of apoptosis was detected by multiple methods in tumor cells following AT7867 treatment. Administration of AT7867 (90 mg/kg p.o. or 20 mg/kg i.p.) to athymic mice implanted with the PTEN-deficient U87MG human glioblastoma xenograft model caused inhibition of phosphorylation of downstream substrates of both AKT and p70S6K and induction of apoptosis, confirming the observations made in vitro. These doses of AT7867 also resulted in inhibition of human tumor growth in PTEN-deficient xenograft models. These data suggest that the novel strategy of AKT and p70S6K blockade may have therapeutic value and supports further evaluation of AT7867 as a single-agent anticancer strategy.


Subject(s)
Cell Proliferation/drug effects , Neoplasms/drug therapy , Oncogene Protein v-akt/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Down-Regulation/drug effects , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Treatment Outcome , Xenograft Model Antitumor Assays
5.
Cell Cycle ; 8(12): 1921-9, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19440047

ABSTRACT

Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Mitosis/drug effects , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Apoptosis/drug effects , Apoptosis/physiology , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Line, Tumor , Collagen Type XI/drug effects , Collagen Type XI/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mimosine/pharmacology , Mitosis/physiology , Paclitaxel/pharmacology , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/drug effects , Tumor Suppressor Protein p53/metabolism , Urea/pharmacology , Xenograft Model Antitumor Assays
6.
J Med Chem ; 52(2): 379-88, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19143567

ABSTRACT

Here, we describe the identification of a clinical candidate via structure-based optimization of a ligand efficient pyrazole-benzimidazole fragment. Aurora kinases play a key role in the regulation of mitosis and in recent years have become attractive targets for the treatment of cancer. X-ray crystallographic structures were generated using a novel soakable form of Aurora A and were used to drive the optimization toward potent (IC(50) approximately 3 nM) dual Aurora A/Aurora B inhibitors. These compounds inhibited growth and survival of HCT116 cells and produced the polyploid cellular phenotype typically associated with Aurora B kinase inhibition. Optimization of cellular activity and physicochemical properties ultimately led to the identification of compound 16 (AT9283). In addition to Aurora A and Aurora B, compound 16 was also found to inhibit a number of other kinases including JAK2 and Abl (T315I). This compound demonstrated in vivo efficacy in mouse xenograft models and is currently under evaluation in phase I clinical trials.


Subject(s)
Benzimidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Mice , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology
7.
J Med Chem ; 51(16): 4986-99, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18656911

ABSTRACT

The application of fragment-based screening techniques to cyclin dependent kinase 2 (CDK2) identified multiple (>30) efficient, synthetically tractable small molecule hits for further optimization. Structure-based design approaches led to the identification of multiple lead series, which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site. The majority of this paper details the structure-guided optimization of indazole (6) using information gained from multiple ligand-CDK2 cocrystal structures. Identification of key binding features for this class of compounds resulted in a series of molecules with low nM affinity for CDK2. Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identification of 33 (AT7519), which is currently being evaluated in clinical trials for the treatment of human cancers.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Piperidines/chemical synthesis , Pyrazoles/chemical synthesis , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Mice , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Structure-Activity Relationship
8.
BMC Cancer ; 7: 12, 2007 Jan 17.
Article in English | MEDLINE | ID: mdl-17233884

ABSTRACT

BACKGROUND: Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. METHODS: The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. RESULTS: Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. CONCLUSION: These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in carcinoma cells, thus enhancing their proliferative capacity. In addition, further different cellular processes seem to be activated by ST-3, possibly accounting for the dual role of ST-3 in tumour progression and metastasis.


Subject(s)
Breast Neoplasms/pathology , Cell Transformation, Neoplastic , Matrix Metalloproteinase 11/metabolism , Up-Regulation , Animals , Cell Line, Tumor , Disease Progression , Estrogens/physiology , Female , Humans , Mice , Mice, Nude , Neoplasm Metastasis/physiopathology , Signal Transduction , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...