Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 52(23): 7544-69, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19366247

ABSTRACT

As part of a program aimed at the development of selective estrogen receptor modulators (SERMs), novel chromene scaffolds, benzopyranobenzoxapanes, were discovered. Many compounds showed binding affinity as low as 1.6-200 nM, displayed antagonist behaviors in the MCF-7 human breast adenocarcinoma cell line as well in Ishikawa cell line with IC(50) values in the range 0.2-360 nM. On the basis of the side chain substitution, various compounds demonstrated strong inhibitory activity in anti-uterotropic assay. Compound 7-(R) and its major metabolites 5-(R) and 6-(R) were evaluated in several in vivo models of estrogen action. Relative to a full estrogen agonist (ethynyl estradiol) and the SERM raloxifene, 7-(R) was found to be a potent SERM that behaved as antagonist in the uterus and exhibited estrogen agonistic activity on bone, plasma lipids, hot flush, and vagina. The overall pharmacokinetic profile and stability were significantly improved compared to those of the phase 2 development compound 9-(R).


Subject(s)
Benzopyrans/chemistry , Benzopyrans/pharmacology , Postmenopause/drug effects , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/chemistry , Selective Estrogen Receptor Modulators/pharmacology , Animals , Benzopyrans/chemical synthesis , Benzopyrans/therapeutic use , Bone Resorption/drug therapy , Cell Line, Tumor , Cholesterol/blood , Drug Evaluation, Preclinical , Drug Stability , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Hot Flashes/drug therapy , Humans , Organ Size/drug effects , Ovariectomy , Postmenopause/blood , Rats , Selective Estrogen Receptor Modulators/chemical synthesis , Selective Estrogen Receptor Modulators/therapeutic use , Structure-Activity Relationship , Substrate Specificity , Uterus/pathology , Vagina/drug effects , Vagina/metabolism
2.
J Org Chem ; 73(3): 1121-3, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18171079

ABSTRACT

The preparation of the selective VEGF-R2 kinase inhibitor 10 (JNJ-17029259) is described in which the key precursor, 4-(5-isoxazolyl)benzonitrile, undergoes clean transformation to the corresponding cumylamine derivative with CeCl(3)-MeLi in THF. This high-yielding cerium mediated transformation is robust, reproducible, and readily scalable based on a requirement for the anhydrous CeCl(3) to be milled and subjected to ultrasound treatment prior to addition of methyllithium.


Subject(s)
Cerium/chemistry , Cesium/chemistry , Chlorides/chemistry , Lithium Compounds/chemistry , Nitriles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Ultrasonics , Benzene/chemistry , Molecular Structure , Nitriles/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Receptors, Vascular Endothelial Growth Factor/metabolism
3.
Bioorg Med Chem ; 16(6): 3321-41, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18155554

ABSTRACT

Replacement of the methyl-thiazole moiety of GW501516 (a PPARdelta selective agonist) with [1,2,4]thiadiazole gave compound 21 which unexpectedly displayed submicromolar potency as a partial agonist at PPARalpha in addition to the high potency at PPARdelta. A structure-activity relationships study of 21 resulted in the identification of 40 as a potent and selective PPARalpha/delta dual agonist. Compound 40 and its close analogs represent a new series of PPARalpha/delta dual agonists. The high potency, high selectivity, significant gene induction, excellent PK profiles, low P450 inhibition or induction, and good in vivo efficacy in four animal models support 40 being selected as a pre-clinical study candidate, and may render 40 as a valuable pharmacological tool in elucidating the complex roles of PPARalpha/delta dual agonists, and the potential usage for the treatment of metabolic syndrome.


Subject(s)
PPAR alpha/agonists , PPAR delta/agonists , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Administration, Oral , Animals , Biological Availability , Gene Expression Regulation/drug effects , Metabolic Syndrome/drug therapy , Mice , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacokinetics , Transcriptional Activation
4.
J Med Chem ; 50(16): 3954-63, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17608467

ABSTRACT

Cardiovascular disease is the most common cause of morbidity and mortality in developed nations. To effectively target dyslipidemia to reduce the risk of cardiovascular disease, it may be beneficial to activate the peroxisome proliferator-activated receptors (PPARs) PPARalpha and PPARdelta simultaneously through a single molecule. Replacement of the methylthiazole of 5 (the PPARdelta selective agonist) with [1,2,4]thiadiazole gave compound 13, which unexpectedly displayed submicromolar potency as a partial agonist at PPARalpha in addition to the high potency at PPARdelta. Optimization of 13 led to the identification of 24 as a potent and selective PPARalpha/delta dual agonist. Compound 24 and its close analogs represent a new series of PPARalpha/delta dual agonists. The high potency, significant gene induction, excellent PK profiles, and good in vivo efficacies in three animal models may render compound 24 as a valuable pharmacological tool in elucidating the complex roles of PPARalpha/delta dual agonists and as a potential treatment of the metabolic syndrome.


Subject(s)
Hypolipidemic Agents/chemical synthesis , PPAR alpha/agonists , PPAR delta/agonists , Thiadiazoles/chemical synthesis , Administration, Oral , Animals , Apolipoprotein A-I/genetics , Cell Line , Female , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Insulin Resistance , Male , Mice , Mice, Obese , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiadiazoles/pharmacokinetics , Thiadiazoles/pharmacology
6.
Bioorg Med Chem Lett ; 16(23): 6102-6, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16971122

ABSTRACT

Inhibition of the p38 map kinase pathway has been shown to be beneficial in the treatment of inflammatory diseases. The first class of potent p38 kinase inhibitors was the pyridinylimidazole compounds from SKB. Since then several pyridinylimidazole-based compounds have been shown to inhibit activated p38 kinase in vitro and in vivo. We have developed a novel series of pyridinylimidazole-based compounds, which potently inhibit the p38 pathway by binding to unactivated p38 kinase and only weakly inhibiting activated p38 kinase activity in vitro.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/toxicity , Esters/chemistry , Mice , Molecular Structure , Piperazine , Piperazines/chemistry , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Mol Pharmacol ; 66(3): 635-47, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15322256

ABSTRACT

Inhibition of angiogenesis may have wide use in the treatment of cancer; however, this approach alone will not cause tumor regression but may only slow the growth of solid tumors. The clinical potential of antiangiogenic agents may be increased by combining them with conventional chemotherapeutics. 4-[4-(1-Amino-1-methylethyl)phenyl]-2-[4-(2-morpholin-4-yl-ethyl)phenylamino]pyrimidine-5-carbonitrile (JNJ-17029259) represents a novel structural class of 5-cyanopyrimidines that are orally available, selective, nanomolar inhibitors of the vascular endothelial growth factor receptor-2 (VEGF-R2) and other tyrosine kinases involved in angiogenesis, such as platelet-derived growth factor receptor, fibroblast growth factor receptor, VEGF-R1, and VEGF-R3, but have little activity on other kinase families. At nanomolar levels, JNJ-17029259 blocks VEGF-stimulated mitogen-activated protein kinase signaling, proliferation/migration, and VEGF-R2 phosphorylation in human endothelial cells; inhibits the formation of vascular sprouting in the rat aortic ring model of angiogenesis; and interferes with the development of new veins and arteries in the chorioallantoic membrane assay. At higher concentrations of 1 to 3 microM, this compound shows antiproliferative activity on cells that may contribute to its antitumor effects. JNJ-17029259 delays the growth of a wide range of human tumor xenografts in nude mice when administered orally as single-agent therapy. Histological examination revealed that the tumors have evidence of reduced vascularity after treatment. In addition, JNJ-17029259 enhances the effects of the conventional chemotherapeutic drugs doxorubicin and paclitaxel in xenograft models when administered orally in combination therapy. An orally available angiogenesis inhibitor that can be used in conjunction with standard chemotherapeutic agents to augment their activity may have therapeutic benefit in stopping the progression of cancer and preventing metastasis.


Subject(s)
Antineoplastic Agents/therapeutic use , Doxorubicin/therapeutic use , Neoplasms, Experimental/drug therapy , Nitriles/therapeutic use , Paclitaxel/therapeutic use , Pyrimidines/therapeutic use , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Cell Division/drug effects , Cell Movement/drug effects , Drug Therapy, Combination , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Enzyme Inhibitors/therapeutic use , Humans , Mice , Nitriles/pharmacology , Pyrimidines/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...