Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 197(8): 3130-3141, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27638864

ABSTRACT

CD4+ Foxp3+ regulatory T cells (Tregs) depend on CD28 signaling for their survival and function, a receptor that has been previously shown to activate the acid sphingomyelinase (Asm)/ceramide system. In this article, we show that the basal and CD28-induced Asm activity is higher in Tregs than in conventional CD4+ T cells (Tconvs) of wild-type (wt) mice. In Asm-deficient (Smpd1-/-; Asm-/-) mice, as compared with wt mice, the frequency of Tregs among CD4+ T cells, turnover of the effector molecule CTLA-4, and their suppressive activity in vitro were increased. The biological significance of these findings was confirmed in our Treg-sensitive mouse model of measles virus (MV) CNS infection, in which we observed more infected neurons and less MV-specific CD8+ T cells in brains of Asm-/- mice compared with wt mice. In addition to genetic deficiency, treatment of wt mice with the Asm inhibitor amitriptyline recapitulated the phenotype of Asm-deficient mice because it also increased the frequency of Tregs among CD4+ T cells. Reduced absolute cell numbers of Tconvs after inhibitor treatment in vivo and extensive in vitro experiments revealed that Tregs are more resistant toward Asm inhibitor-induced cell death than Tconvs. Mechanistically, IL-2 was capable of providing crucial survival signals to the Tregs upon inhibitor treatment in vitro, shifting the Treg/Tconv ratio to the Treg side. Thus, our data indicate that Asm-inhibiting drugs should be further evaluated for the therapy of inflammatory and autoimmune disorders.


Subject(s)
Brain/immunology , Measles/immunology , Morbillivirus/immunology , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Brain/virology , CD28 Antigens/metabolism , CD4 Antigens/metabolism , Cell Differentiation , Cell Survival , Cells, Cultured , Ceramides/metabolism , Forkhead Transcription Factors/metabolism , Interleukin-2/metabolism , Lymphocyte Activation , Measles/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingomyelin Phosphodiesterase/genetics , T-Lymphocyte Subsets/virology , T-Lymphocytes, Regulatory/virology
2.
Front Oncol ; 5: 242, 2015.
Article in English | MEDLINE | ID: mdl-26579494

ABSTRACT

Interleukin-2 (IL-2) transgenic Ewing sarcoma cells can induce tumor specific T and NK cell responses and reduce tumor growth in vivo and in vitro. Nevertheless, the efficiency of this stimulation is not high enough to inhibit tumor growth completely. In addition to recognition of the cognate antigen, optimal T-cell stimulation requires signals from so-called co-stimulatory molecules. Several members of the tumor necrosis factor superfamily have been identified as co-stimulatory molecules that can augment antitumor immune responses. OX40 (CD134) and OX40 ligand (OX40L = CD252; also known as tumor necrosis factor ligand family member 4) is one example of such receptor/ligand pair with co-stimulatory function. In the present investigation, we generated OX40L transgenic Ewing sarcoma cells and tested their immunostimulatory activity in vitro. OX40L transgenic Ewing sarcoma cells showed preserved expression of Ewing sarcoma-associated (anti)gens including lipase member I, cyclin D1 (CCND1), cytochrome P450 family member 26B1 (CYP26B1), and the Ewing sarcoma breakpoint region 1-friend leukemia virus integration 1 (EWSR1-FLI1) oncogene. OX40L-expressing tumor cells showed a trend for enhanced immune stimulation against Ewing sarcoma cells in combination with IL-2 and stimulation of CD137. Our data suggest that inclusion of the OX40/OX40L pathway of co-stimulation might improve immunotherapy strategies for the treatment of Ewing sarcoma.

3.
PLoS One ; 7(3): e33989, 2012.
Article in English | MEDLINE | ID: mdl-22448284

ABSTRACT

We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified) mice and recombinant measles virus (MV). Using this model infection we investigated the role of regulatory T cells (Tregs) as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+) CD25(+) Foxp3(+) Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+) T cells predominantly recognising the H-2D(b)-presented viral hemagglutinin epitope MV-H(22-30) (RIVINREHL) were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p.) application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT) in DEREG (depletion of regulatory T cells)-mice induced an increase of virus-specific CD8(+) effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS.


Subject(s)
Brain/immunology , Central Nervous System Viral Diseases/immunology , Central Nervous System Viral Diseases/virology , Forkhead Transcription Factors/metabolism , Measles/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Brain/virology , Chlorocebus aethiops , Flow Cytometry , Immunosuppression Therapy , Measles/virology , Measles virus/immunology , Mice , Mice, Inbred C57BL , Vero Cells
4.
Med Microbiol Immunol ; 199(3): 261-71, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20390298

ABSTRACT

Viral infections of the central nervous system(CNS) mostly represent clinically important, often life-threatening complications of systemic viral infections. After acute measles, CNS complications may occur early (acute postinfectious measles encephalitis, APME) or after years of viral persistence (subacute sclerosing panencephalitis, SSPE). In spite of a presumably functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from SSPE. There is still no specific therapy for acute complications and persistent MV infections of the CNS. Hamsters, rats, and (genetically unmodified and modified) mice have been used as model systems to study mechanisms of MV-induced CNS infections. Functional CD4+ and CD8+ T cells together with IFN-gamma are required to overcome the infection. With the help of recombinant measles viruses and mice expressing endogenous or transgenic receptors, interesting aspects such as receptor-dependent viral spread and viral determinants of virulence have been investigated. However, many questions concerning the lack of efficient immune control in the CNS are still open. Recent research opened new perspectives using specific antivirals such as short interfering RNA (siRNA) or small molecule inhibitors. Inspite of obvious hurdles, these treatments are the most promising approaches to future therapies.


Subject(s)
Measles virus/isolation & purification , Models, Animal , Subacute Sclerosing Panencephalitis/drug therapy , Subacute Sclerosing Panencephalitis/pathology , Animals , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cricetinae , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Measles virus/immunology , Measles virus/pathogenicity , Mice , RNA, Small Interfering/therapeutic use , Rats , Subacute Sclerosing Panencephalitis/immunology , Subacute Sclerosing Panencephalitis/virology
5.
J Virol ; 83(18): 9423-31, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19587038

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a demyelinating central nervous system disease caused by a persistent measles virus (MV) infection of neurons and glial cells. There is still no specific therapy available, and in spite of an intact innate and adaptive immune response, SSPE leads inevitably to death. In order to select effective antiviral short interfering RNAs (siRNAs), we established a plasmid-based test system expressing the mRNA of DsRed2 fused with mRNA sequences of single viral genes, to which certain siRNAs were directed. siRNA sequences were expressed as short hairpin RNA (shRNA) from a lentiviral vector additionally expressing enhanced green fluorescent protein (EGFP) as an indicator. Evaluation by flow cytometry of the dual-color system (DsRed and EGFP) allowed us to find optimal shRNA sequences. Using the most active shRNA constructs, we transduced persistently infected human NT2 cells expressing virus-encoded HcRed (piNT2-HcRed) as an indicator of infection. shRNA against N, P, and L mRNAs of MV led to a reduction of the infection below detectable levels in a high percentage of transduced piNT2-HcRed cells within 1 week. The fraction of virus-negative cells in these cultures was constant over at least 3 weeks posttransduction in the presence of a fusion-inhibiting peptide (Z-Phe-Phe-Gly), preventing the cell fusion of potentially cured cells with persistently infected cells. Transduced piNT2 cells that lost HcRed did not fuse with underlying Vero/hSLAM cells, indicating that these cells do not express viral proteins any more and are "cured." This demonstrates in tissue culture that NT2 cells persistently infected with MV can be cured by the transduction of lentiviral vectors mediating the long-lasting expression of anti-MV shRNA.


Subject(s)
Measles virus/genetics , Measles/drug therapy , RNA, Small Interfering/pharmacology , RNA, Viral/drug effects , Cell Line, Tumor , Genes, Reporter , Genetic Vectors , Humans , Lentivirus , RNA, Small Interfering/therapeutic use , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...