Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 134(10): 1330-1347, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38557119

ABSTRACT

BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.


Subject(s)
COVID-19 , Endosomes , Lysosomes , Tetraspanin 24 , Animals , Lysosomes/metabolism , Tetraspanin 24/metabolism , Tetraspanin 24/genetics , Humans , Mice , COVID-19/metabolism , COVID-19/immunology , COVID-19/pathology , Endosomes/metabolism , Mice, Knockout , Vasculitis/metabolism , Mice, Inbred C57BL , SARS-CoV-2 , Inflammation/metabolism , Inflammation/pathology , Sepsis/metabolism
2.
Viruses ; 15(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37112842

ABSTRACT

The mucociliary airway epithelium lines the human airways and is the primary site of host-environmental interactions in the lung. Following virus infection, airway epithelial cells initiate an innate immune response to suppress virus replication. Therefore, defining the virus-host interactions of the mucociliary airway epithelium is critical for understanding the mechanisms that regulate virus infection, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Non-human primates (NHP) are closely related to humans and provide a model to study human disease. However, ethical considerations and high costs can restrict the use of in vivo NHP models. Therefore, there is a need to develop in vitro NHP models of human respiratory virus infection that would allow for rapidly characterizing virus tropism and the suitability of specific NHP species to model human infection. Using the olive baboon (Papio anubis), we have developed methodologies for the isolation, in vitro expansion, cryopreservation, and mucociliary differentiation of primary fetal baboon tracheal epithelial cells (FBTECs). Furthermore, we demonstrate that in vitro differentiated FBTECs are permissive to SARS-CoV-2 infection and produce a potent host innate-immune response. In summary, we have developed an in vitro NHP model that provides a platform for the study of SARS-CoV-2 infection and other human respiratory viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Host Microbial Interactions , Papio , Epithelial Cells , Lung
3.
PLoS Pathog ; 18(8): e1010386, 2022 08.
Article in English | MEDLINE | ID: mdl-35969617

ABSTRACT

Zika virus (ZIKV) infection in pregnancy can produce catastrophic teratogenic damage to the developing fetus including microcephaly and congenital Zika syndrome (CZS). We previously described fetal CNS pathology occurring by three weeks post-ZIKV inoculation in Olive baboons at mid-gestation, including neuroinflammation, loss of radial glia (RG), RG fibers, neuroprogenitor cells (NPCs) resulting in disrupted NPC migration. In the present study, we explored fetal brain pathologies at term gestation resulting from ZIKV exposure during either first or second trimester in the Olive baboon. In all dams, vRNA in whole blood resolved after 7 days post inoculation (dpi). One first trimester infected dam aborted at 5 dpi. All dams developed IgM and IgG response to ZIKV with ZIKV IgG detected in fetal serum. Placental pathology and inflammation were observed including disruption of syncytiotrophoblast layers, delayed villous maturation, partially or fully thrombosed vessels, calcium mineralization and fibrin deposits. In the uterus, ZIKV was detected in ¾ first trimester but not in second trimester infected dams. While ZIKV was not detected in any fetal tissue at term, all fetuses exhibited varying degrees of neuropathology. Fetal brains from ZIKV inoculated dams exhibited a range of gross brain pathologies including irregularities of the major gyri and sulci of the cerebral cortex and cerebellar pathology. Frontal cortices of ZIKV fetuses showed a general disorganization of the six-layered cortex with degree of disorganization varying among the fetuses from the two groups. Frontal cortices from ZIKV inoculation in the first but not second trimester exhibited increased microglia, and in both trimester ZIKV inoculation, increased astrocyte numbers (white matter). In the cerebellum, increased microglia were observed in fetuses from both first and second trimester inoculation. In first trimester ZIKV inoculation, decreased oligodendrocyte precursor cell populations were observed in fetal cerebellar white matter. In general, our observations are in accordance with those described in human ZIKV infected fetuses.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Animals , Female , Fetus , Humans , Immunoglobulin G , Papio anubis , Placenta , Pregnancy
4.
Vaccine ; 39(30): 4063-4071, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34140172

ABSTRACT

Respiratory syncytial virus (RSV) is the major viral respiratory pathogen for human infants and children. Despite a severe global burden incurred by annual RSV epidemics, there is no licensed RSV vaccine. We have developed an RSV vaccine from a human RSV strain from which the gene for the viral M protein has been deleted ("Mnull RSV"). RSV infects airway cells and produces each of its proteins. The M protein is responsible for reassembling the various other synthesized viral proteins into new, intact virus. In the absence of the M protein, therefore, reassembly does not occur, and the Mnull RSV does not replicate. We vaccinated 2-week old infant baboons with Mnull RSV either intranasally (IN) or directly into the lung (intratracheal, or IT), then infected these animals by inoculating human RSV directly into the lung. IN vaccination induced inconsistent serum RSV neutralizing antibody (NA) responses, but provided moderate reductions in respiratory rates, overall signs of illness and viral replication in bronchoalveolar lavage (BAL) fluid following infection. Intratracheal vaccination induced much stronger RSV NA responses, which persisted for at least 4-6 months. Following RSV infection, animals vaccinated by the IT route had much greater reductions in tachypnea and work of breathing than animals vaccinated IN, and had undetectable amounts of virus in BAL fluids. These results support the further development of IT Mnull RSV vaccination to reduce the impact of RSV infection in humans.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Antibodies, Neutralizing , Antibodies, Viral , Child , Humans , Infant , Papio , Respiratory Syncytial Virus Infections/prevention & control , Vaccination , Virus Replication
5.
J Virol ; 94(11)2020 05 18.
Article in English | MEDLINE | ID: mdl-32188737

ABSTRACT

Zika virus (ZIKV) infection is now firmly linked to congenital Zika syndrome (CZS), including fetal microcephaly. While Aedes species of mosquito are the primary vector for ZIKV, sexual transmission of ZIKV is a significant route of infection. ZIKV has been documented in human, mouse, and nonhuman primate (NHP) semen. It is critical to establish NHP models of the vertical transfer of ZIKV that recapitulate human pathogenesis. We hypothesized that vaginal deposition of ZIKV-infected baboon semen would lead to maternal infection and vertical transfer in the olive baboon (Papio anubis). Epidemiological studies suggest an increased rate of CZS in the Americas compared to the original link to CZS in French Polynesia; therefore, we also compared the French Polynesian (FP) ZIKV isolate to the Puerto Rican (PR) isolate. Timed-pregnant baboons (n = 6) were inoculated via vaginal deposition of baboon semen containing 106 focus-forming units (FFU) of ZIKV (n = 3 for FP isolate H/PF/2013; n = 3 for PR isolate PRVABC59) at midgestation (86 to 95 days of gestation [dG]; term, 183 dG) on day 0 (all dams) and then at 7-day intervals through 3 weeks. Maternal blood, saliva, and cervicovaginal wash (CVW) samples were obtained. Animals were euthanized at 28 days (n = 5) or 39 days (n = 1) after the initial inoculation, and maternal/fetal tissues were collected. Viremia was achieved in 3/3 FP ZIKV-infected dams and 2/3 PR ZIKV-infected dams. ZIKV RNA was detected in CVW samples of 5/6 dams. ZIKV RNA was detected in lymph nodes but not the ovaries, uterus, cervix, or vagina in FP isolate-infected dams. ZIKV RNA was detected in lymph nodes (3/3), uterus (2/3), and vagina (2/3) in PR isolate-infected dams. Placenta, amniotic fluid, and fetal tissues were ZIKV RNA negative in the FP isolate-infected dams, whereas 2/3 PR isolate-infected dam placentas were ZIKV RNA positive. We conclude that ZIKV-infected semen is a means of ZIKV transmission during pregnancy in primates. The PR isolate appeared more capable of widespread dissemination to tissues, including reproductive tissues and placenta, than the FP isolate.IMPORTANCE Zika virus remains a worldwide health threat, with outbreaks still occurring in the Americas. While mosquitos are the primary vector for the spread of the virus, sexual transmission of Zika virus is also a significant means of infection, especially in terms of passage from an infected to an uninfected partner. While sexual transmission has been documented in humans, and male-to-female transmission has been reported in mice, ours is the first study in nonhuman primates to demonstrate infection via vaginal deposition of Zika virus-infected semen. The latter is important since a recent publication indicated that human semen inhibited, in a laboratory setting, Zika virus infection of reproductive tissues. We also found that compared to the French Polynesian isolate, the Puerto Rican Zika virus isolate led to greater spread throughout the body, particularly in reproductive tissues. The American isolates of Zika virus appear to have acquired mutations that increase their efficacy.


Subject(s)
Monkey Diseases , Pregnancy Complications, Infectious , Semen/virology , Vagina/virology , Zika Virus Infection , Zika Virus/metabolism , Animals , Female , Male , Monkey Diseases/metabolism , Monkey Diseases/pathology , Monkey Diseases/transmission , Monkey Diseases/virology , Papio anubis , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/veterinary , RNA, Viral/metabolism , Vagina/pathology , Zika Virus Infection/metabolism , Zika Virus Infection/pathology , Zika Virus Infection/transmission , Zika Virus Infection/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...