Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37215325

ABSTRACT

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36770427

ABSTRACT

Site-controlled Ga droplets on AlGaAs substrates are fabricated using area-selective deposition of Ga through apertures in a mask during molecular beam epitaxy (MBE). The Ga droplets can be crystallized into GaAs quantum dots using a crystallization step under As flux. In order to model the complex process, including the masked deposition of the droplets and a reduction of their number during a thermal annealing step, a multiscale kinetic Monte Carlo (mkMC) simulation of self-assembled Ga droplet formation on AlGaAs is expanded for area-selective deposition. The simulation has only two free model parameters: the activation energy for surface diffusion and the activation energy for thermal escape of adatoms from a droplet. Simulated droplet numbers within the opening of the aperture agree quantitatively with the experimental results down to the perfect site-control, with one droplet per aperture. However, the model parameters are different compared to those of the self-assembled droplet growth. We attribute this to the presence of the mask in close proximity to the surface, which modifies the local process temperature and the As background. This approach also explains the dependence of the model parameters on the size of the aperture.

3.
Phys Rev Lett ; 128(15): 157401, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499885

ABSTRACT

The functionality of phonon-based quantum devices largely depends on the efficiency of the interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of the phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.g., an exciton, with which a photon forms a polariton. In this work, we discover a giant photoelasticity of exciton-polaritons in a short-period superlattice and exploit it to detect propagating acoustic phonons. We demonstrate that 42 GHz coherent phonons can be detected with extremely high sensitivity in the time domain Brillouin oscillations by probing with photons in the spectral vicinity of the polariton resonance.

4.
Sci Rep ; 11(1): 19081, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34580361

ABSTRACT

Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their electronic structure. So far, the most commonly used experimental techniques for this purpose have been all-optical spectroscopy methods that, however, are generally averaging in momentum space. Additional information can be gained by angle-resolved photoelectron spectroscopy (ARPES), which measures the electronic structure with momentum resolution. Here we report on the use of extremely low-energy ARPES (photon energy ~ 7 eV) to increase depth sensitivity and access buried QW states, located at 3 nm and 6 nm below the surface of cubic-GaN/AlN and GaAs/AlGaAs heterostructures, respectively. We find that the QW states in cubic-GaN/AlN can indeed be observed, but not their energy dispersion, because of the high surface roughness. The GaAs/AlGaAs QW states, on the other hand, are buried too deep to be detected by extremely low-energy ARPES. Since the sample surface is much flatter, the ARPES spectra of the GaAs/AlGaAs show distinct features in momentum space, which can be reconducted to the band structure of the topmost surface layer of the QW structure. Our results provide important information about the samples' properties required to perform extremely low-energy ARPES experiments on electronic states buried in semiconductor heterostructures.

5.
Acta Neuropathol Commun ; 6(1): 81, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30129426

ABSTRACT

Glioblastoma (GB) is the most frequent primary brain tumor in adults with a dismal prognosis despite aggressive treatment including surgical resection, radiotherapy and chemotherapy with the alkylating agent temozolomide. Thus far, the successful implementation of the concept of targeted therapy where a drug targets a selective alteration in cancer cells was mainly limited to model diseases with identified genetic drivers. One of the most commonly altered oncogenic drivers of GB and therefore plausible therapeutic target is the epidermal growth factor receptor (EGFR). Trials targeting this signaling cascade, however, have been negative, including the phase III OSAG 101-BSA-05 trial. This highlights the need for further patient selection to identify subgroups of GB with true EGFR-dependency. In this retrospective analysis of treatment-naïve samples of the OSAG 101-BSA-05 trial cohort, we identify the EGFR signaling activity markers phosphorylated PRAS40 and phosphorylated ribosomal protein S6 as predictive markers for treatment efficacy of the EGFR-blocking antibody nimotuzumab in MGMT promoter unmethylated GBs. Considering the total trial population irrespective of MGMT status, a clear trend towards a survival benefit from nimotuzumab was already detectable when tumors had above median levels of phosphorylated ribosomal protein S6. These results could constitute a basis for further investigations of nimotuzumab or other EGFR- and downstream signaling inhibitors in selected patient cohorts using the reported criteria as candidate predictive biomarkers.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/diet therapy , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Calcium-Binding Proteins , Cohort Studies , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , ErbB Receptors/immunology , Female , Humans , Male , Microfilament Proteins , Necrosis/etiology , Necrosis/metabolism , Phosphorylation/drug effects , Quinazolines , Ribosomal Protein S6/metabolism , Time Factors , Treatment Outcome , Tumor Suppressor Proteins/metabolism
6.
Opt Express ; 24(18): 20672-84, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607671

ABSTRACT

We present phase sensitive cavity field measurements on photonic crystal microcavities. The experiments have been performed as autocorrelation measurements with ps double pulse laser excitation for resonant and detuned conditions. Measured E-field autocorrelation functions reveal a very strong detuning dependence of the phase shift between laser and cavity field and of the autocorrelation amplitude of the cavity field. The fully resolved phase information allows for a precise frequency discrimination and hence for a precise measurement of the detuning between laser and cavity. The behavior of the autocorrelation amplitude and phase and their detuning dependence can be fully described by an analytic model. Furthermore, coherent control of the cavity field is demonstrated by tailored laser excitation with phase and amplitude controlled pulses. The experimental proof and verification of the above described phenomena became possible by an electric detection scheme, which employs planar photonic crystal microcavity photo diodes with metallic Schottky contacts in the defect region of the resonator. The applied photo current detection was shown to work also efficiently at room temperature, which make electrically contacted microcavities attractive for real world applications.

7.
Nat Commun ; 6: 8204, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26348157

ABSTRACT

Developing a quantum photonics network requires a source of very-high-fidelity single photons. An outstanding challenge is to produce a transform-limited single-photon emitter to guarantee that single photons emitted far apart in the time domain are truly indistinguishable. This is particularly difficult in the solid-state as the complex environment is the source of noise over a wide bandwidth. A quantum dot is a robust, fast, bright and narrow-linewidth emitter of single photons; layer-by-layer growth and subsequent nano-fabrication allow the electronic and photonic states to be engineered. This represents a set of features not shared by any other emitter but transform-limited linewidths have been elusive. Here, we report transform-limited linewidths measured on second timescales, primarily on the neutral exciton but also on the charged exciton close to saturation. The key feature is control of the nuclear spins, which dominate the exciton dephasing via the Overhauser field.

8.
Eur J Cancer ; 51(4): 522-532, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25616647

ABSTRACT

PURPOSE: A randomised, open label phase III trial was conducted to evaluate efficacy of nimotuzumab, a monoclonal antibody against epidermal growth factor receptor (EGF-R) added to standard therapy for newly diagnosed glioblastoma. PATIENTS AND METHODS: 149 glioblastoma patients stratified as with or without residual tumour were randomly assigned to receive either intravenous nimotuzumab 400mg weekly added to standard radiochemotherapy followed by 400mg biweekly after twelve weeks or standard radiochemotherapy. Progression status after 52 weeks (12moPFS) and progression-free survival (PFS) based on Macdonald criteria were co-primary and overall survival (OS), toxicity and quality of life secondary end-points. RESULTS: 142 patients were evaluated for efficacy (per protocol cohort). 12 moPFS was 25.6% in the experimental arm and 20.3% in the control group. In residual tumour patients (n=81) median PFS was 5.6 versus 4.0 months, (hazard ratio (HR), 0.87; 95% confidence interval (CI), 0.55-1.37), for patients without residual tumour (n=61) it was 10.6 versus 9.9 months, (HR, 1.01; 95% CI, 0.57-1.77). Median OS in patients with residual tumour was 19.5 versus 16.7 months, (HR, 0.90; 95% CI, 0.52-1.57; P=0.7061), for patients without 23.3 versus 21.0 months (HR, 0.77; 95% CI, 0.41-1.44; P=0.4068). A small cohort of MGMT non-methylated patients with residual tumour showed PFS of 6.2 versus 4.0 months (HR, 0.77; 95% CI, 0.35-1.67; P=0.4997) and OS of 19.0 versus 13.8 months (HR, 0.66; 95% CI, 0.27-1.64; P=0.3648). EGF-R amplification did not correlate with clinical efficacy of nimotuzumab. Nimotuzumab was well tolerated. CONCLUSION: This study, albeit negative, contains hypothesis generating signals supporting evaluation of correlative, efficacy-predicting tumour parameters for nimotuzumab in the treatment of glioblastoma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Brain Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Glioblastoma/drug therapy , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Brain Neoplasms/mortality , Brain Neoplasms/psychology , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Glioblastoma/mortality , Glioblastoma/psychology , Humans , Male , Middle Aged , Quality of Life , Tumor Suppressor Proteins/genetics
9.
Nat Nanotechnol ; 9(9): 671-5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25150719

ABSTRACT

The nuclear spins in nanostructured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts; and nanoscale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.

10.
Rev Sci Instrum ; 84(9): 093305, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089821

ABSTRACT

Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E × B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10(6)-10(7) clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

11.
J Appl Crystallogr ; 46(Pt 4): 887-892, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-24046493

ABSTRACT

Grazing-incidence X-ray diffraction measurements on single GaAs nanowires (NWs) grown on a (111)-oriented GaAs substrate by molecular beam epitaxy are reported. The positions of the NWs are intentionally determined by a direct implantation of Au with focused ion beams. This controlled arrangement in combination with a nanofocused X-ray beam allows the in-plane lattice parameter of single NWs to be probed, which is not possible for randomly grown NWs. Reciprocal space maps were collected at different heights along the NW to investigate the crystal structure. Simultaneously, substrate areas with different distances from the Au-implantation spots below the NWs were probed. Around the NWs, the data revealed a 0.4% decrease in the lattice spacing in the substrate compared with the expected unstrained value. This suggests the presence of a compressed region due to Au implantation.

12.
Rev Sci Instrum ; 84(7): 073905, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902082

ABSTRACT

Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10(7) and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

13.
Nano Lett ; 10(9): 3399-407, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20722408

ABSTRACT

Individual self-assembled quantum dots and quantum posts are studied under the influence of a surface acoustic wave. In optical experiments we observe an acoustically induced switching of the occupancy of the nanostructures along with an overall increase of the emission intensity. For quantum posts, switching occurs continuously from predominantly charged excitons (dissimilar number of electrons and holes) to neutral excitons (same number of electrons and holes) and is independent of whether the surface acoustic wave amplitude is increased or decreased. For quantum dots, switching is nonmonotonic and shows a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of positively charged and neutral excitons is observed at high surface acoustic wave amplitudes. These findings are explained by carrier trapping and localization in the thin and disordered two-dimensional wetting layer on top of which quantum dots nucleate. This limitation can be overcome for quantum posts where acoustically induced charge transport is highly efficient in a wide lateral matrix-quantum well.

14.
Nanoscale Res Lett ; 5(5): 829-33, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20672130

ABSTRACT

A two-dimensional electron gas (2DEG) situated nearby a single layer of self-assembled quantum dots (QDs) in an inverted high electron mobility transistor (HEMT) structure is used as a detector for time-resolved tunneling measurements. We demonstrate a strong influence of charged QDs on the conductance of the 2DEG which allows us to probe the tunneling dynamics between the 2DEG and the QDs time resolved. Measurements of hysteresis curves with different sweep times and real-time conductance measurements in combination with an boxcar-like evaluation method enables us to unambiguously identify the transients as tunneling events between the s- and p-electron QD states and the 2DEG and rule out defect-related transients.

15.
Opt Express ; 18(8): 7946-54, 2010 Apr 12.
Article in English | MEDLINE | ID: mdl-20588637

ABSTRACT

Microdisks made from GaAs with embedded InAs quantum dots are immersed in the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The quantum dots serve as emitters feeding the optical modes of the photonic cavity. By changing temperature, the liquid crystal undergoes a phase transition from the isotropic to the nematic state, which can be used as an effective tuning mechanism of the photonic modes of the cavity. In the nematic state, the uniaxial electrical anisotropy of the liquid crystal molecules can be exploited for orienting the material in an electric field, thus externally controlling the birefringence of the material. Using this effect, an electric field induced tuning of the modes is achieved. Numerical simulations using the finite-differences time-domain (FDTD) technique employing an anisotropic dielectric medium allow to understand the alignment of the liquid crystal molecules on the surface of the microdisk resonator.

16.
BMC Genomics ; 11: 168, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20226016

ABSTRACT

BACKGROUND: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. RESULTS: We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof approximately 50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. CONCLUSIONS: This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.


Subject(s)
Desiccation , Expressed Sequence Tags , Gene Expression Profiling , Invertebrates/genetics , Animals , Cluster Analysis , Comparative Genomic Hybridization , Gene Library , Sequence Analysis, DNA
17.
Phys Rev Lett ; 105(17): 176804, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231068

ABSTRACT

We demonstrate the possibility to influence the shape of the wave functions in semiconductor quantum dots by the application of an external magnetic field B(z). The states of the so-called p shell, which show distinct orientations along the crystal axes for B(z) = 0, can be modified to become more and more circularly symmetric with an increasing field. Their changing probability density can be monitored using magnetotunneling wave function mapping. Calculations of the magnetotunneling signals are in good agreement with the experimental data and explain the different tunneling maps of the p(+) and p⁻ states as a consequence of the different sign of their respective phase factors.

18.
Biotechnol Adv ; 27(4): 348-52, 2009.
Article in English | MEDLINE | ID: mdl-19472511

ABSTRACT

Certain organisms found across a range of taxa, including bacteria, yeasts, plants and many invertebrates such as nematodes and tardigrades are able to survive almost complete loss of body water. The dry organisms may remain in this state, which is known as anhydrobiosis, for decades without apparent damage. When water again becomes available, they rapidly rehydrate and resume active life. Research in anhydrobiosis has focused mainly on sugar metabolism and stress proteins. Despite the discovery of various molecules which are involved in desiccation and water stress, knowledge of the regulatory network governing the stability of the cellular architecture and the metabolic machinery during dehydration is still fragmentary and not well understood. A combination of transcriptional, proteomic and metabolic approaches with bioinformatics tools can provide a better understanding of gene regulation that underlie the biological functions and physiology related to anhydrobiosis. The development of this concept will raise exciting possibilities and techniques for the preservation and stabilization of biological materials in the dry state.


Subject(s)
Invertebrates/physiology , Preservation, Biological/methods , Animals , Cell Physiological Phenomena , Computational Biology , Dehydration , Disaccharides/metabolism , Heat-Shock Proteins/metabolism , Models, Animal , Proteins/metabolism , Signal Transduction
19.
Phys Rev Lett ; 99(17): 176803, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995358

ABSTRACT

We have measured highly visible Aharonov-Bohm (AB) oscillations in a ring structure defined by local anodic oxidation on a p-type GaAs heterostructure with strong spin-orbit interactions. Clear beating patterns observed in the raw data can be interpreted in terms of a spin geometric phase. Besides h/e oscillations, we resolve the contributions from the second harmonic of AB oscillations and also find a beating in these h/2e oscillations. A resistance minimum at B=0 T, present in all gate configurations, is the signature of destructive interference of the spins propagating along time-reversed paths.

20.
Recept Channels ; 9(1): 49-58, 2003.
Article in English | MEDLINE | ID: mdl-12825298

ABSTRACT

Effective screening of large compound libraries in ion channel drug discovery requires the development of new electrophysiological techniques with substantially increased throughputs compared to the conventional patch clamp technique. Sophion Bioscience is aiming to meet this challenge by developing two lines of automated patch clamp products, a traditional pipette-based system called Apatchi-1, and a silicon chip-based system QPatch. The degree of automation spans from semi-automation (Apatchi-1) where a trained technician interacts with the system in a limited way, to a complete automation (QPatch 96) where the system works continuously and unattended until screening of a full compound library is completed. The performance of the systems range from medium to high throughputs.


Subject(s)
Drug Design , Electrophysiology/instrumentation , Electrophysiology/methods , Ion Channels/metabolism , Animals , Automation , Ions , Patch-Clamp Techniques/methods , Silicon , Software , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...