Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 46(18): e111, 2018 10 12.
Article in English | MEDLINE | ID: mdl-29924368

ABSTRACT

Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications.


Subject(s)
Cloning, Molecular/methods , Fungi/genetics , Gene Expression Regulation, Fungal , Genetic Engineering/methods , Genetic Vectors/genetics , Aspergillus niger/genetics , Gene Expression , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods , Trichoderma/genetics
2.
Front Plant Sci ; 9: 45, 2018.
Article in English | MEDLINE | ID: mdl-29434617

ABSTRACT

Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

3.
Plant Biotechnol J ; 16(2): 404-414, 2018 02.
Article in English | MEDLINE | ID: mdl-28640955

ABSTRACT

Purification is a bottleneck and a major cost factor in the production of antibodies. We set out to engineer a bifunctional fusion protein from two building blocks, Protein A and a hydrophobin, aiming at low-cost and scalable antibody capturing in solutions. Immunoglobulin-binding Protein A is widely used in affinity-based purification. The hydrophobin fusion tag, on the other hand, has been shown to enable purification by two-phase separation. Protein A was fused to two different hydrophobin tags, HFBI or II, and expressed transiently in Nicotiana benthamiana. The hydrophobins enhanced accumulation up to 35-fold, yielding up to 25% of total soluble protein. Both fused and nonfused Protein A accumulated in protein bodies. Hence, the increased yield could not be attributed to HFB-induced protein body formation. We also demonstrated production of HFBI-Protein A fusion protein in tobacco BY-2 suspension cells in 30 l scale, with a yield of 35 mg/l. Efficient partitioning to the surfactant phase confirmed that the fusion proteins retained the amphipathic properties of the hydrophobin block. The reversible antibody-binding capacity of the Protein A block was similar to the nonfused Protein A. The best-performing fusion protein was tested in capturing antibodies from hybridoma culture supernatant with two-phase separation. The fusion protein was able to carry target antibodies to the surfactant phase and subsequently release them back to the aqueous phase after a change in pH. This report demonstrates the potential of hydrophobin fusion proteins for novel applications, such as harvesting antibodies in solutions.


Subject(s)
Antibodies/metabolism , Nicotiana/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Staphylococcal Protein A/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Staphylococcal Protein A/genetics , Nicotiana/genetics
4.
Bioconjug Chem ; 28(6): 1639-1648, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28557453

ABSTRACT

The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Recombinant Fusion Proteins/metabolism , Cell Line, Tumor , Fungal Proteins/genetics , Humans , Nanoparticles/therapeutic use , Neoplasms/therapy , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics , Nicotiana/metabolism , Transferrin/genetics
5.
PLoS One ; 11(10): e0164032, 2016.
Article in English | MEDLINE | ID: mdl-27706254

ABSTRACT

Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification.


Subject(s)
Fungal Proteins/genetics , Fusarium/metabolism , Trichoderma/metabolism , Fusarium/genetics , Genetic Engineering , Green Fluorescent Proteins/metabolism , Plants, Genetically Modified/metabolism , Recombinant Fusion Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Trichoderma/genetics
6.
Methods Mol Biol ; 1385: 189-97, 2016.
Article in English | MEDLINE | ID: mdl-26614291

ABSTRACT

Fusion to fungal hydrophobins has proven to be a useful tool to enhance accumulation and recovery of recombinant proteins in plants. Aqueous two-phase separation (ATPS) is an attractive system to capture hydrophobin fusion proteins from plant extracts. The process can simultaneously purify and concentrate target protein with minimal background. ATPS avoids the use of chromatographic column steps, can be carried out in a short time frame, and is amenable to industrial-scale protein purification. A drawback of performing ATPS in large volumes is the lengthy time required for phase separation; however, this can be avoided by incorporating continuous systems, which are often preferred by the processing industry. This method chapter illustrates the capture of GFP-HFBI hydrophobin fusion protein from BY-2 plant cell suspension extract using a semi-continuous ATPS method.


Subject(s)
Fungal Proteins/isolation & purification , Nicotiana/genetics , Recombinant Fusion Proteins/isolation & purification , Cell Culture Techniques , Green Fluorescent Proteins/genetics , Liquid-Liquid Extraction , Plant Cells , Plants, Genetically Modified , Nicotiana/metabolism
7.
Plant Biotechnol J ; 14(2): 670-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26059044

ABSTRACT

Human interleukin-22 (IL-22) is a member of the IL-10 cytokine family that has recently been shown to have major therapeutic potential. IL-22 is an unusual cytokine as it does not act directly on immune cells. Instead, IL-22 controls the differentiation, proliferation and antimicrobial protein expression of epithelial cells, thereby maintaining epithelial barrier function. In this study, we transiently expressed human IL-22 in Nicotiana benthamiana plants and investigated the role of N-glycosylation on protein folding and biological activity. Expression levels of IL-22 were up to 5.4 µg/mg TSP, and N-glycan analysis revealed the presence of the atypical Lewis A structure. Surprisingly, upon engineering of human-like N-glycans on IL-22 by co-expressing mouse FUT8 in ΔXT/FT plants a strong reduction in Lewis A was observed. Also, core α1,6-fucoylation did not improve the biological activity of IL-22. The combination of site-directed mutagenesis of Asn54 and in vivo deglycosylation with PNGase F also revealed that N-glycosylation at this position is not required for proper protein folding. However, we do show that the presence of a N-glycan on Asn54 contributes to the atypical N-glycan composition of plant-produced IL-22 and influences the N-glycan composition of N-glycans on other positions. Altogether, our data demonstrate that plants offer an excellent tool to investigate the role of N-glycosylation on folding and activity of recombinant glycoproteins, such as IL-22.


Subject(s)
Asparagine/metabolism , Interleukins/biosynthesis , Interleukins/metabolism , Nicotiana/metabolism , Polysaccharides/metabolism , Animals , Drosophila melanogaster , Glycosylation , HEK293 Cells , Humans , Interleukins/isolation & purification , Metabolic Engineering , Plant Leaves/metabolism , Plants, Genetically Modified , Nicotiana/genetics , Interleukin-22
8.
Plant Biotechnol J ; 12(4): 402-10, 2014 May.
Article in English | MEDLINE | ID: mdl-24341724

ABSTRACT

Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions.


Subject(s)
Fungal Proteins/biosynthesis , Nicotiana/cytology , Plant Cells/metabolism , Recombinant Fusion Proteins/biosynthesis , Biomass , Bioreactors , Cell Proliferation , Freeze Drying , Green Fluorescent Proteins/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins/isolation & purification , Suspensions , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...