Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Eur J Hum Genet ; 32(7): 795-803, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778082

ABSTRACT

Pathogenic variants in NOTCH1 are associated with non-syndromic congenital heart disease (CHD) and Adams-Oliver syndrome (AOS). The clinical presentation of individuals with damaging NOTCH1 variants is characterized by variable expressivity and incomplete penetrance; however, data on systematic phenotypic characterization are limited. We report the genotype and phenotype of a cohort of 33 individuals (20 females, 13 males; median age 23.4 years, range 2.5-68.3 years) from 11 families with causative NOTCH1 variants (9 inherited, 2 de novo; 9 novel), ascertained from a proband with CHD. We describe the cardiac and extracardiac anomalies identified in these 33 individuals, only four of whom met criteria for AOS. The most common CHD identified was tetralogy of Fallot, though various left- and right-sided lesions and septal defects were also present. Extracardiac anomalies identified include cutis aplasia (5/33), cutaneous vascular anomalies (7/33), vascular anomalies of the central nervous system (2/10), Poland anomaly (1/33), pulmonary hypertension (2/33), and structural brain anomalies (3/14). Identification of these findings in a cardiac proband cohort supports NOTCH1-associated CHD and NOTCH1-associated AOS lying on a phenotypic continuum. Our findings also support (1) Broad indications for NOTCH1 molecular testing (any familial CHD, simplex tetralogy of Fallot or hypoplastic left heart); (2) Cascade testing in all at-risk relatives; and (3) A thorough physical exam, in addition to cardiac, brain (structural and vascular), abdominal, and ophthalmologic imaging, in all gene-positive individuals. This information is important for guiding the medical management of these individuals, particularly given the high prevalence of NOTCH1 variants in the CHD population.


Subject(s)
Heart Defects, Congenital , Pedigree , Phenotype , Receptor, Notch1 , Humans , Receptor, Notch1/genetics , Male , Female , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Adult , Adolescent , Child, Preschool , Child , Middle Aged , Aged , Mutation , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Ectodermal Dysplasia/diagnosis , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Limb Deformities, Congenital/diagnosis , Scalp Dermatoses/congenital
2.
Eur J Hum Genet ; 31(11): 1251-1260, 2023 11.
Article in English | MEDLINE | ID: mdl-37644171

ABSTRACT

Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adult , Animals , Humans , Mice , Heterozygote , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Repressor Proteins/genetics , Seizures , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Commun Biol ; 6(1): 770, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481629

ABSTRACT

Low blood flow through the fetal left heart is often conjectured as an etiology for hypoplastic left heart syndrome (HLHS). To investigate if a decrease in left heart flow results in growth failure, we generate left ventricular inflow obstruction (LVIO) in mid-gestation fetal lambs by implanting coils in their left atrium using an ultrasound-guided percutaneous technique. Significant LVIO recapitulates important clinical features of HLHS: decreased antegrade aortic valve flow, compensatory retrograde perfusion of the brain and ascending aorta (AAo) from the arterial duct, severe left heart hypoplasia, a non-apex forming LV, and a thickened endocardial layer. The hypoplastic AAo have miRNA-gene pairs annotating to cell proliferation that are inversely differentially expressed by bulk RNA-seq. Single-nucleus RNA-seq of the hypoplastic LV myocardium shows an increase in fibroblasts with a reciprocal decrease in cardiomyocyte nuclei proportions. Fibroblasts, cardiomyocytes and endothelial cells from hypoplastic myocardium have increased expression of extracellular matrix component or fibrosis genes with dysregulated fibroblast growth factor signaling. Hence, a severe sustained ( ~ 1/3 gestation) reduction in fetal left heart flow is sufficient to cause left heart hypoplasia. This is accompanied by changes in cellular composition and gene expression consistent with a pro-fibrotic environment and aberrant induction of mesenchymal programs.


Subject(s)
Endothelial Cells , Sheep, Domestic , Sheep , Animals , Fetus , Myocardium , Heart Ventricles
4.
Eur J Endocrinol ; 188(6): 485-493, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37260092

ABSTRACT

OBJECTIVE: Clinical trials with immune checkpoint inhibitors (ICI) in adrenocortical carcinoma (ACC) have yielded contradictory results. We aimed to evaluate treatment response and safety of ICI in ACC in a real-life setting. DESIGN: Retrospective cohort study of 54 patients with advanced ACC receiving ICI as compassionate use at 6 German reference centres between 2016 and 2022. METHODS: Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and treatment-related adverse events (TRAE) were assessed. RESULTS: In 52 patients surviving at least 4 weeks after initiation of ICI, ORR was 13.5% (6-26) and DCR was 24% (16-41). PFS was 3.0 months (95% CI, 2.3-3.7). In all patients, median OS was 10.4 months (3.8-17). 17 TRAE occurred in 15 patients, which was associated with a longer PFS of 5.5 (1.9-9.2) vs 2.5 (2.0-3.0) months (HR 0.29, 95% CI, 0.13-0.66, P = 0.001) and OS of 28.2 (9.5-46.8) vs 7.0 (4.1-10.2) months (HR 0.34, 95% CI, 0.12-0.93). Positive tissue staining for programmed cell death ligand 1 (PD-L1) was associated with a longer PFS of 3.2 (2.6-3.8) vs 2.3 (1.6-3.0, P < 0.05) months. Adjusted for concomitant mitotane use, treatment with nivolumab was associated with lower risk of progression (HR 0.36, 0.15-0.90) and death (HR 0.20, 0.06-0.72) compared to pembrolizumab. CONCLUSIONS: In the real-life setting, we observe a response comparable to other second-line therapies and an acceptable safety profile in ACC patients receiving different ICI. The relevance of PD-L1 as a marker of response and the potentially more favourable outcome in nivolumab-treated patients require confirmation.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Nivolumab/therapeutic use , Retrospective Studies , Adrenocortical Carcinoma/drug therapy , B7-H1 Antigen/therapeutic use , Antineoplastic Agents, Immunological/adverse effects , Immunotherapy/adverse effects , Immunotherapy/methods , Adrenal Cortex Neoplasms/drug therapy
5.
Hum Genet ; 142(2): 201-216, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36376761

ABSTRACT

Copy number variants (CNVs) represent major etiologic factors in rare genetic diseases. Current clinical CNV interpretation workflows require extensive back-and-forth with multiple tools and databases. This increases complexity and time burden, potentially resulting in missed genetic diagnoses. We present the Suite for CNV Interpretation and Prioritization (SCIP), a software package for the clinical interpretation of CNVs detected by whole-genome sequencing (WGS). The SCIP Visualization Module near-instantaneously displays all information necessary for CNV interpretation (variant quality, population frequency, inheritance pattern, and clinical relevance) on a single page-supported by modules providing variant filtration and prioritization. SCIP was comprehensively evaluated using WGS data from 1027 families with congenital cardiac disease and/or autism spectrum disorder, containing 187 pathogenic or likely pathogenic (P/LP) CNVs identified in previous curations. SCIP was efficient in filtration and prioritization: a median of just two CNVs per case were selected for review, yet it captured all P/LP findings (92.5% of which ranked 1st). SCIP was also able to identify one pathogenic CNV previously missed. SCIP was benchmarked against AnnotSV and a spreadsheet-based manual workflow and performed superiorly than both. In conclusion, SCIP is a novel software package for efficient clinical CNV interpretation, substantially faster and more accurate than previous tools (available at https://github.com/qd29/SCIP , a video tutorial series is available at https://bit.ly/SCIPVideos ).


Subject(s)
Autism Spectrum Disorder , DNA Copy Number Variations , Humans , Whole Genome Sequencing , Software , Rare Diseases
6.
Pediatr Res ; 93(4): 905-910, 2023 03.
Article in English | MEDLINE | ID: mdl-36167815

ABSTRACT

BACKGROUND: Children with medical complexity (CMC) are a priority pediatric population, with high resource use and associated costs. Genome-wide sequencing is increasingly organized for CMC early in life as a diagnostic test. Polypharmacy becomes common as CMC age. Clinically relevant pharmacogenetic (PGx) information can be extracted from existing genome sequencing (GS) data via GS-PGx profiling. The role of GS-PGx profiling in the CMC population is unclear. METHODS: Prescribed medications were extracted from care plans of 802 eligible CMC enrolled in a structured Complex Care Program over a 10-year period. Drug-gene associations were annotated using curated Clinical Pharmacogenetics Implementation Consortium data. GS-PGx profiling was then performed for a subset of 50 CMC. RESULTS: Overall, 546 CMC (68%) were prescribed at least one medication with an established PGx association. In the GS-PGx subgroup, 24 (48%) carried variants in pharmacogenes with drug-gene guidelines for one or more of their current medications. All had findings of potential relevance to some medications, including 32 (64%) with variants in CYP2C19 that could affect their metabolism of proton-pump inhibitors. CONCLUSION: GS-PGx profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision prescribing practices into the lifelong care of CMC. IMPACT: Polypharmacy and genetic test utilization are both common in children with medical complexity. The role of repurposing genome sequencing data for pharmacogenetic profiling in children with medical complexity was previously unclear. We identified a high rate of medication use with clinically relevant drug-gene associations in this priority pediatric population and demonstrated that relevant pharmacogenetic information can be extracted from their existing genome sequencing data. Pharmacogenetic profiling at the time of diagnostics-focused genetic testing could be an efficient way to incorporate precision prescribing practices into the lifelong care of children with medical complexity.


Subject(s)
Genetic Testing , Pharmacogenetics , Child , Humans , Chromosome Mapping
7.
medRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234782

ABSTRACT

Autism Spectrum Disorder (ASD) exhibits an ~4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1 gene, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ~1Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been examined, in part because there is no apparent functional murine orthologue. Through clinical testing, here, we identified 6 males and 1 female with ASD from 6 unrelated families carrying rare, predicted-damaging or loss-of-function variants in DDX53. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 24 additional individuals with ASD harboring rare, damaging DDX53 variations, including the same variants detected in two families from the original clinical analysis. In this extended cohort of 31 participants with ASD (28 male, 3 female), we identified 25 mostly maternally-inherited variations in DDX53, including 18 missense changes, 2 truncating variants, 2 in-frame variants, 2 deletions in the 3' UTR and 1 copy number deletion. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mouse, may also influence the design and interpretation of murine-modelling of ASD.

8.
CJC Pediatr Congenit Heart Dis ; 2(6Part A): 426-439, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38161665

ABSTRACT

Genetic changes affect embryogenesis, cardiac and extracardiac phenotype, development, later onset conditions, and both short- and long-term outcomes and comorbidities in the increasing population of individuals with tetralogy of Fallot (TOF). In this review, we focus on current knowledge about clinically relevant genetics for patients with TOF across the lifespan. The latest findings for TOF genetics that are pertinent to day-to-day practice and lifelong management are highlighted: morbidity/mortality, cardiac/extracardiac features, including neurodevelopmental expression, and recent changes to prenatal screening and diagnostics. Genome-wide microarray is the first-line clinical genetic test for TOF across the lifespan, detecting relevant structural changes including the most common for TOF, the 22q11.2 microdeletion. Accumulating evidence illustrates opportunities for advances in understanding and care that may arise from genetic diagnosis at any age. We also glimpse into the near future when the multigenic nature of TOF will be more fully revealed, further enhancing possibilities for preventive care. Precision medicine is nigh.


Dans la population croissante des personnes atteintes de la tétralogie de Fallot (TF), des modifications génétiques influencent l'embryogenèse, le développement, le phénotype cardiaque et extracardiaque, les complications tardives ainsi que les issues de santé et les états comorbides, à court et à long terme. Notre article de synthèse présente l'état des connaissances sur les renseignements génétiques cliniquement utiles pour les patients atteints de la TF tout au long de leur vie. Nous soulignons les découvertes récentes sur les aspects génétiques de la TF qui sont pertinentes pour la pratique clinique quotidienne et la prise en charge lors des différentes étapes de la vie : la morbidité et la mortalité, les caractéristiques cardiaques et extracardiaques (y compris l'expression neurodéveloppementale) et les changements récents touchant le dépistage et les diagnostics prénataux. La technologie de puce à ADN pour le génome entier constitue le test génétique clinique de première intention pour les personnes de tout âge atteintes de la TF, et elle permet la détection de modifications structurelles pertinentes dont celle le plus fréquemment associée à la TF, la microdélétion 22q11.2. L'utilité d'un diagnostic génétique pour améliorer la compréhension de la situation des patients de tous les âges et les soins qui leur sont offerts est de plus en plus mise en évidence. Nous entrevoyons également un avenir pas si lointain dans lequel la nature multigénique de la TF sera entièrement connue, ce qui ouvrira la voie à des soins préventifs bonifiés. La venue de la médecine de précision est imminente.

9.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36368308

ABSTRACT

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , DNA Copy Number Variations/genetics , Genomics
10.
Nat Commun ; 13(1): 6463, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309498

ABSTRACT

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/genetics , Canada/epidemiology , Genome , Multifactorial Inheritance/genetics , Whole Genome Sequencing , Genetic Predisposition to Disease
11.
Sci Rep ; 12(1): 13603, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948575

ABSTRACT

Magnetic resonance imaging/Ultrasound (MRI/US) fusion targeted biopsy (TB) in combination with a systematic biopsy (SB) improves cancer detection but limited data is available how to manage patients with a Prostate Imaging-Reporting and Data System (PI-RADS) ≥ 4 lesion and a negative biopsy. We evaluate the real-world management and the rate of clinically significant Prostate Cancer (csPCa) during follow-up. 1546 patients with a multi-parametric MRI (mpMRI) and a PI-RADS ≥ 3 who underwent SB and TB between January 2012 and May 2017 were retrospectively analyzed. 222 men with a PI-RADS ≥ 4 and a negative biopsy were included until 2019. For 177/222 (80%) complete follow-up data was obtained. 66/84 (78%) had an initial PI-RADS 4 and 18 (22%) a PI-RADS 5 lesion. 48% (84/177) received a repeat mpMRI; in the follow-up mpMRI, 39/84 (46%) lesions were downgraded to PI-RADS 2 and 11 (13%) to PI-RADS 3; three cases were upgraded and 28 lesions remained consistent. 18% (32/177) men underwent repeated TB and csPCa was detected in 44% (14/32). Our study presents real world data on the management of men with a negative TB biopsy. Men with a positive mpMRI and lesions with high suspicion (PI-RADS4/5) and a negative targeted biopsy should be critically reviewed and considered for repeat biopsy or strict surveillance. The optimal clinical risk assessment remains to be further evaluated.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms , Follow-Up Studies , Humans , Image-Guided Biopsy , Male , Prostatic Neoplasms/pathology , Retrospective Studies
13.
Langenbecks Arch Surg ; 407(6): 2481-2488, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35633419

ABSTRACT

PURPOSE: In selected cases of severe Cushing's syndrome due to uncontrolled ACTH secretion, bilateral adrenalectomy appears unavoidable. Compared with unilateral adrenalectomy (for adrenal Cushing's syndrome), bilateral adrenalectomy has a perceived higher perioperative morbidity. The aim of the current study was to compare both interventions in endogenous Cushing's syndrome regarding postoperative outcomes. METHODS: We report a single-center, retrospective cohort study comparing patients with hypercortisolism undergoing bilateral vs. unilateral adrenalectomy during 2008-2021. Patients with adrenal Cushing's syndrome due to adenoma were compared with patients with ACTH-dependent Cushing's syndrome (Cushing's disease and ectopic ACTH production) focusing on postoperative morbidity and mortality as well as long-term survival. RESULTS: Of 83 patients with adrenalectomy for hypercortisolism (65.1% female, median age 53 years), the indication for adrenalectomy was due to adrenal Cushing's syndrome in 60 patients (72.2%; 59 unilateral and one bilateral), and due to hypercortisolism caused by Cushing's disease (n = 16) or non-pituitary uncontrolled ACTH secretion of unknown origin (n = 7) (27.7% of all adrenalectomies). Compared with unilateral adrenalectomy (n = 59), patients with bilateral adrenalectomy (n = 24) had a higher rate of severe complications (0% vs. 33%; p < 0.001) and delayed recovery (median: 10.2% vs. 79.2%; p < 0.001). Using the MTL30 marker, patients with bilateral adrenalectomy fared worse than patients after unilateral surgery (MTL30 positive: 7.2% vs. 25.0% p < 0.001). Postoperative mortality was increased in patients with bilateral adrenalectomy (0% vs. 8.3%; p = 0.081). CONCLUSION: While unilateral adrenalectomy for adrenal Cushing's syndrome represents a safe and definitive therapeutic option, bilateral adrenalectomy to control ACTH-dependent extra-adrenal Cushing's syndrome or Cushing's disease is a more complicated intervention with a mortality of nearly 10%.


Subject(s)
Cushing Syndrome , Pituitary ACTH Hypersecretion , Adrenalectomy/adverse effects , Adrenocorticotropic Hormone , Cushing Syndrome/etiology , Cushing Syndrome/surgery , Female , Humans , Male , Middle Aged , Morbidity , Pituitary ACTH Hypersecretion/complications , Pituitary ACTH Hypersecretion/surgery , Retrospective Studies
14.
Eur J Hum Genet ; 30(5): 611-618, 2022 05.
Article in English | MEDLINE | ID: mdl-35304602

ABSTRACT

PAN2 encodes a subunit of a deadenylation complex with important functions in mRNA stability and post-transcriptional regulation of gene expression. A homozygous frameshift deletion in PAN2 was reported in a single affected individual with developmental delay and multiple congenital anomalies. Here, we describe five additional individuals from three unrelated families with homozygous predicted loss-of-function variants in PAN2. The affected individuals presented with significant overlap in their clinical features, including mild-moderate intellectual disability, hypotonia, sensorineural hearing loss, EEG abnormalities, congenital heart defects (tetralogy of Fallot, septal defects, dilated aortic root), urinary tract malformations, ophthalmological anomalies, short stature with other skeletal anomalies, and craniofacial features including flat occiput, ptosis, long philtrum, and short neck. Our data confirm that biallelic predicted loss-of-function variants in PAN2 cause a syndrome with multiple congenital anomalies, and suggest an important role of mRNA polyA tail length for proper organ formation.


Subject(s)
Abnormalities, Multiple , Dwarfism , Intellectual Disability , Neurodevelopmental Disorders , Abnormalities, Multiple/genetics , Humans , Intellectual Disability/genetics , Muscle Hypotonia , Neurodevelopmental Disorders/genetics , Phenotype , RNA, Messenger/metabolism
15.
Genet Med ; 24(5): 1027-1036, 2022 05.
Article in English | MEDLINE | ID: mdl-35219592

ABSTRACT

PURPOSE: Genome sequencing (GS) can aid clinical management of multiple pediatric conditions. Insurers require accurate cost information to inform funding and implementation decisions. The objective was to compare the laboratory workflows and microcosts of trio GS testing in children with developmental delay (DD) and in children with cardiac conditions. METHODS: Cost items related to each step in trio GS (child and 2 parents) for both populations were identified and measured. Program costs over 5 years were estimated. Probabilistic and deterministic analyses were conducted. RESULTS: The mean cost per trio GS was CAD$6634.11 (95% CI = 6352.29-6913.40) for DD and CAD$8053.10 (95% CI = 7699.30-8558.10) for cardiac conditions. The 5-year program cost was CAD$28.11 million (95% CI = 26.91-29.29) for DD and CAD$5.63 million (95% CI = 5.38-5.98) for cardiac conditions. Supplies constituted the largest cost component for both populations. The higher cost per sample for the population with cardiac conditions was due to the inclusion of pharmacogenomics, higher bioinformatics labor costs, and a more labor intensive case review. CONCLUSION: This analysis indicated important variation in trio GS workflow and costs between pediatric populations in a single institution. Enhanced understanding of the clinical utility and costs of GS can inform harmonization and implementation decision-making.


Subject(s)
Parents , Pharmacogenetics , Base Sequence , Child , Chromosome Mapping , Humans
16.
NPJ Genom Med ; 6(1): 91, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34737294

ABSTRACT

Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.

17.
Dtsch Med Wochenschr ; 146(15): 950-954, 2021 Aug.
Article in German | MEDLINE | ID: mdl-34344028

ABSTRACT

Acromegaly is a rare but severe disorder which is usually due to an excessive secretion of growth hormone (GH) by a pituitary adenoma. Screening mainly relies on the measurement of insulin-like growth factor 1, and confirmatory diagnostics includes a GH suppression test. As delayed diagnosis results in increased morbidity and mortality, we here discuss recently published suggestions regarding the biochemical work-up of suspected cases and the follow-up of co-morbidities. Moreover, new analytical tools (such as automatic identification of typical facial changes using artificial intelligence) are presented, hopefully allowing for an earlier diagnosis in the future. So far, surgery is still regarded as therapy of first choice. In cases without postoperative remission, a new imaging approach (combining sellar magnetic resonance imaging and position emission tomography) may improve the results of repeated surgery. The pharmaceutical arsenal now includes the first orally available somatostatin analogue, and recent data on possible drug combinations and the outcome of radiotherapy are presented. Finally, special attention is paid to older and pregnant patients, as well as certain considerations during the COVID-19 pandemic (where appropriate diagnosis and management of acromegaly is particularly challenging).


Subject(s)
Acromegaly/diagnosis , Acromegaly/surgery , Acromegaly/diagnostic imaging , Acromegaly/therapy , Adenoma/surgery , Comorbidity , Early Diagnosis , Growth Hormone-Secreting Pituitary Adenoma/surgery , Humans , Prognosis
18.
Circ Genom Precis Med ; 14(4): e003410, 2021 08.
Article in English | MEDLINE | ID: mdl-34328347

ABSTRACT

BACKGROUND: Tetralogy of Fallot (TOF)-the most common cyanotic heart defect in newborns-has evidence of multiple genetic contributing factors. Identifying variants that are clinically relevant is essential to understand patient-specific disease susceptibility and outcomes and could contribute to delineating pathomechanisms. METHODS: Using a clinically driven strategy, we reanalyzed exome sequencing data from 811 probands with TOF, to identify rare loss-of-function and other likely pathogenic variants in genes associated with congenital heart disease. RESULTS: We confirmed a major contribution of likely pathogenic variants in FLT4 (VEGFR3 [vascular endothelial growth factor receptor 3]; n=14) and NOTCH1 (n=10) and identified 1 to 3 variants in each of 21 other genes, including ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, RASA1, SMAD2, and TBX1. In addition, multiple loss-of-function variants provided support for 3 emerging congenital heart disease/TOF candidate genes: KDR (n=4), IQGAP1 (n=3), and GDF1 (n=8). In total, these variants were identified in 63 probands (7.8%). Using the 26 composite genes in a STRING protein interaction enrichment analysis revealed a biologically relevant network (P=3.3×10-16), with VEGFR2 (vascular endothelial growth factor receptor 2; KDR) and NOTCH1 (neurogenic locus notch homolog protein 1) representing central nodes. Variants associated with arrhythmias/sudden death and heart failure indicated factors that could influence long-term outcomes. CONCLUSIONS: The results are relevant to precision medicine for TOF. They suggest considerable clinical yield from genome-wide sequencing, with further evidence for KDR (VEGFR2) as a congenital heart disease/TOF gene and for VEGF (vascular endothelial growth factor) and Notch signaling as mechanisms in human disease. Harnessing the genetic heterogeneity of single gene defects could inform etiopathogenesis and help prioritize novel candidate genes for TOF.


Subject(s)
Genetic Predisposition to Disease , Protein Interaction Maps , Tetralogy of Fallot/genetics , Female , Genome-Wide Association Study , Humans , Infant, Newborn , Male , Exome Sequencing
19.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34159400

ABSTRACT

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Subject(s)
Genetic Heterogeneity , Homeodomain Proteins/genetics , Limb Deformities, Congenital/genetics , Mutation , Transcription Factors/genetics , Ubiquitin-Activating Enzymes/genetics , Base Sequence , Cohort Studies , DNA Copy Number Variations , Gene Expression , Genetic Testing , Humans , Infant , Limb Deformities, Congenital/metabolism , Limb Deformities, Congenital/pathology , Male , Pedigree , Transcription Factors/deficiency , Ubiquitin-Activating Enzymes/deficiency , Whole Genome Sequencing
20.
JAMA Netw Open ; 4(5): e2110446, 2021 05 03.
Article in English | MEDLINE | ID: mdl-34037732

ABSTRACT

Importance: Pharmacogenomic (PGx) testing provides preemptive pharmacotherapeutic guidance regarding the lack of therapeutic benefit or adverse drug reactions of PGx targeted drugs. Pharmacogenomic information is of particular value among children with complex medical conditions who receive multiple medications and are at higher risk of developing adverse drug reactions. Objectives: To assess the implementation outcomes of a PGx testing program comprising both a point-of-care model that examined targeted drugs and a preemptive model informed by whole-genome sequencing that evaluated a broad range of drugs for potential therapy among children in a pediatric tertiary care setting. Design, Setting, and Participants: This cohort study was conducted at The Hospital for Sick Children in Toronto, Ontario, from January 2017 to September 2020. Pharmacogenomic analyses were performed among 172 children who were categorized into 2 groups: a point-of-care cohort and a preemptive cohort. The point-of-care cohort comprised 57 patients referred to the consultation clinic for planned therapy with PGx targeted drugs and/or for adverse drug reactions, including lack of therapeutic benefit, after the receipt of current or past medications. The preemptive cohort comprised 115 patients who received exploratory whole-genome sequencing-guided PGx testing for their heart conditions from the cardiac genome clinic at the Ted Rogers Centre for Heart Research. Exposures: Patients received PGx analysis of whole-genome sequencing data and/or multiplex genotyping of 6 pharmacogenes (CYP2C19, CYP2C9, CYP2D6, CYP3A5, VKORC1, and TPMT) that have established PGx clinical guidelines. Main Outcomes and Measures: The number of patients for whom PGx test results warranted deviation from standard dosing regimens. Results: A total of 172 children (mean [SD] age, 8.5 [5.6] years; 108 boys [62.8%]) were enrolled in the study. In the point-of-care cohort, a median of 2 target genes (range, 1-5 genes) were investigated per individual, with CYP2C19 being the most frequently examined; genotypes in 21 of 57 children (36.8%) were incompatible with standard treatment regimens. As expected from population allelic frequencies, among the 115 children in the whole-genome sequencing-guided preemptive cohort, 92 children (80.0%) were recommended to receive nonstandard treatment regimens for potential drug therapies based on their 6-gene pharmacogenetic profile. Conclusions and Relevance: In this cohort study, among both the point-of-care and preemptive cohorts, the multiplex PGx testing program provided dosing recommendations that deviated from standard regimens at an overall rate that was similar to the population frequencies of relevant variants.


Subject(s)
Genetic Testing/statistics & numerical data , Pediatrics/statistics & numerical data , Pharmacogenomic Testing/statistics & numerical data , Point-of-Care Testing/statistics & numerical data , Precision Medicine/methods , Precision Medicine/statistics & numerical data , Tertiary Healthcare/statistics & numerical data , Adolescent , Child , Cohort Studies , Female , Humans , Male , Ontario , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...