Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 612: 119-125, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35523049

ABSTRACT

Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.


Subject(s)
Diabetes Mellitus , Protein Serine-Threonine Kinases , Animals , Intracellular Signaling Peptides and Proteins , Mice , Mitogen-Activated Protein Kinase 6/metabolism , Obesity
2.
EMBO Mol Med ; 13(5): e13548, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33949105

ABSTRACT

Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.


Subject(s)
Chylomicrons , Lipid Metabolism , Animals , Chylomicrons/metabolism , Humans , Intestines , Mice , Obesity , Protein Kinase D2 , Protein Kinases , Triglycerides
3.
PLoS Pathog ; 17(2): e1009210, 2021 02.
Article in English | MEDLINE | ID: mdl-33596248

ABSTRACT

Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection.


Subject(s)
Epithelial Cells/virology , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/physiology , Organoids/virology , Receptor, EphA2/metabolism , Stomach/virology , Virus Internalization , Epithelial Cells/metabolism , Epstein-Barr Virus Infections/metabolism , Humans , Organoids/metabolism , Stomach/physiology , Stomach Neoplasms/metabolism , Stomach Neoplasms/virology
4.
Genes Dev ; 34(7-8): 495-510, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32139423

ABSTRACT

Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Energy Metabolism/genetics , Lipolysis/genetics , Mitogen-Activated Protein Kinase 6/genetics , Mitogen-Activated Protein Kinase 6/metabolism , Obesity/complications , 3T3 Cells , Adipose Tissue/enzymology , Animals , Diabetes Mellitus, Type 2/drug therapy , Drug Evaluation, Preclinical , Forkhead Box Protein O1/metabolism , Gene Deletion , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...