Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 86(4): 372-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24851334

ABSTRACT

Physicochemical characterization of dissolved organic carbon (DOC) provides essential data to describe watershed characteristics after drastic changes caused by wildfires. Post-fire watershed behavior is important for water source selection, management, and drinking water treatment optimization. Using ash and other burned vegetation fragments, a leaching procedure was implemented to describe physicochemical changes to watershed DOC caused by wildfires. Samples were collected after the 2007 and 2009 wildfires near Santa Barbara, California. Substantial differences in size distribution (measured by ultrafiltration), polarity (measured by polarity rapid assessment method), and the origin of leached DOC (measured by fluorescence) were observed between burned and unburned sites. Recently burned ash had 10 times the DOC leaching potential, and was dominated by large size fragments, compared to weathered 2-year-old ash. Charged DOC fractions were found to positively correlate with DOC size, whereas hydrophobic and hydrophilic DOC fractions were not. Proteins were only observed in recently burned ash and were indicative of recent post-fire biological activity.


Subject(s)
Environmental Monitoring/methods , Fires , Fresh Water/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , California , Filtration/methods , Particle Size , Seasons , Solid Phase Extraction/methods , Spectrometry, Fluorescence/methods
2.
Water Res ; 43(15): 3685-92, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19564035

ABSTRACT

Characterization of molecular size of natural organic matter (NOM) is a valuable tool when assessing its effect on the performance of water treatment systems as well as its geochemical origin. Size fractionation can be accomplished by ultrafiltration (UF). Unfortunately, membrane manufacturing generates a range of pore sizes. Many membrane manufacturers use molecular weight cutoff (MWCO) metric based on a 90% retention of given solute after specified duration of filtration. The objective of this study was to characterize the ability of different commercially available UF membranes to separate different size fractions of NOM. The UF membranes characterized were YM (regenerated cellulose, negatively charged) and PB (polyethersulfone, negatively charged) product lines by Millipore. The probes used to represent the size, shape and charge of NOM were polymers (polyethylene glycols (PEGs), dextrans, polystyrene sulfonates (PSSs)), dyes (bromocresol green, congo red, methyl red, methyl orange) and biological molecules (vitamin B-12 and bacitracin). The results show that MWCO definition does not hold for membranes of 5kDa and 10kDa pore openings using most polymers and dyes. The MWCO definition holds for 1kDa membrane for all tested probes. Under natural water conditions PSSs assume random coil configurations that are nearly identical to Suwannee fulvic acid. The results show that PSS agrees with stated MWCOs. The study demonstrates that ultrafiltration is not a simple mechanical sieving process, but that charges on the membrane and the constituent play a significant role in the rejection process. Effective probe size was increased seven- to fourteen-fold by charge interactions between the negative probes and negatively charged membrane. Uncharged molecules larger than specified MWCOs are able to pass through pores (PEGs), while small charged molecules (dyes) do not pass. For probes with low or neutral charges, shape becomes an important factor, with globular being favored over linear structure. Thus, MWCOs cannot be trusted for purposes of NOM size characterization. The study recommends the use of YM 1K, PB 5K and YM 10kDa membranes for comparative-only NOM size ultrafiltration characterization within the 1-10kDa size range.


Subject(s)
Ultrafiltration/standards , Water Purification/methods , Bacitracin/analysis , Bacitracin/chemistry , Coloring Agents/analysis , Coloring Agents/chemistry , Dextrans/analysis , Dextrans/chemistry , Micropore Filters/classification , Micropore Filters/standards , Molecular Weight , Organic Chemicals/chemistry , Polyethylene Glycols/analysis , Polyethylene Glycols/chemistry , Polystyrenes/analysis , Polystyrenes/chemistry , Quality Control , Ultrafiltration/classification , Ultrafiltration/methods , Vitamin B 12/analysis , Vitamin B 12/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...