Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684700

ABSTRACT

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Mice , Chemoradiotherapy/methods , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Radiation Tolerance , YAP-Signaling Proteins/metabolism , Brain/metabolism , Brain/pathology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...