Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 45(1): 399-413, 2023 02.
Article in English | MEDLINE | ID: mdl-35972662

ABSTRACT

Healthy metabolic measures in humans are associated with longevity. Dysregulation leads to metabolic syndrome (MetS) and negative health outcomes. Recent exceptional longevity (EL) genome wide association studies have facilitated estimation of an individual's polygenic risk score (PRS) for EL. We tested the hypothesis that individuals with high ELPRS have a low prevalence of MetS. Participants were from five cohorts of middle-aged to older adults. The primary analyses were performed in the UK Biobank (UKBB) (n = 407,800, 40-69 years). Replication analyses were undertaken using three Australian studies: Hunter Community Study (n = 2122, 55-85 years), Older Australian Twins Study (n = 539, 65-90 years) and Sydney Memory and Ageing Study (n = 925, 70-90 years), as well as the Swedish Gothenburg H70 Birth Cohort Studies (n = 2273, 70-93 years). MetS was defined using established criteria. Regressions and meta-analyses were performed with the ELPRS and MetS and its components. Generally, MetS prevalence (22-30%) was higher in the older cohorts. In the UKBB, high EL polygenic risk was associated with lower MetS prevalence (OR = 0.94, p = 1.84 × 10-42) and its components (p < 2.30 × 10-8). Meta-analyses of the replication cohorts showed nominal associations with MetS (p = 0.028) and 3 MetS components (p < 0.05). This work suggests individuals with a high polygenic risk for EL have a healthy metabolic profile promoting longevity.


Subject(s)
Longevity , Metabolic Syndrome , Humans , Aged , Middle Aged , Longevity/genetics , Genome-Wide Association Study , Australia , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Risk Factors , Metabolome
2.
Genes (Basel) ; 10(3)2019 03 18.
Article in English | MEDLINE | ID: mdl-30889929

ABSTRACT

Studies investigating exceptionally long-lived (ELL) individuals, including genetic studies, have linked cardiovascular-related pathways, particularly lipid and cholesterol homeostasis, with longevity. This study explored the genetic profiles of ELL individuals (cases: n = 294, 95⁻106 years; controls: n = 1105, 55⁻65 years) by assessing their polygenic risk scores (PRS) based on a genome wide association study (GWAS) threshold of p < 5 × 10-5. PRS were constructed using GWAS summary data from two exceptional longevity (EL) analyses and eight cardiovascular-related risk factors (lipids) and disease (myocardial infarction, coronary artery disease, stroke) analyses. A higher genetic risk for exceptional longevity (EL) was significantly associated with longevity in our sample (odds ratio (OR) = 1.19⁻1.20, p = 0.00804 and 0.00758, respectively). Two cardiovascular health PRS were nominally significant with longevity (HDL cholesterol, triglycerides), with higher PRS associated with EL, but these relationships did not survive correction for multiple testing. In conclusion, ELL individuals did not have significantly lower polygenic risk for the majority of the investigated cardiovascular health traits. Future work in larger cohorts is required to further explore the role of cardiovascular-related genetic variants in EL.


Subject(s)
Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Longevity , Aged , Aged, 80 and over , Cardiovascular Diseases/blood , Cholesterol, HDL/blood , Female , Humans , Male , Middle Aged , Multifactorial Inheritance , Risk Assessment , Triglycerides/blood
3.
Mech Ageing Dev ; 175: 24-34, 2018 10.
Article in English | MEDLINE | ID: mdl-29890178

ABSTRACT

BACKGROUND: Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses. METHODS: Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts. RESULTS: Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males). CONCLUSION: In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls.


Subject(s)
Healthy Aging/genetics , Longevity/genetics , Polymorphism, Genetic , Age Factors , Aged, 80 and over , Female , Genotype , Heredity , Humans , Male , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...