Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 24(15): 7875-80, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18588323

ABSTRACT

Fourier transform relaxation NMR has been used to study how the mobility of poly(ethylene oxide) is affected by its adsorption onto colloidal silica particles of various sizes. Novel results have been obtained which illustrate the unexploited potential of this method for the study of interfacial species in complex systems. The results quantify how polymer mobility varies along an adsorption isotherm. When the particles are in excess, the polymer is strongly adsorbed and hence has a large spin-spin magnetic relaxation rate constant, R(2). The value of R(2) in this region increases with particle size, because the associated reduction in particle surface curvature results in a reduction in the mobility of the adsorbed polymer. This is accompanied by a reduction in the signal intensity, as a higher fraction of the polymer is adsorbed in the form of train segments too immobile to detect using the Carr-Purcell-Meiboom-Gill pulse sequence. When the polymer concentration reaches approximately 0.5 mg m(-2), the initial region of high affinity adsorption ends and so the polymer solution concentration increases. This is accompanied by a reduction in R(2), which then approaches the value for a simple polymer solution in the absence of particles. The results are corroborated by comparison with rheological measurements and molecular dynamics simulations of an analogous particle-polymer system.

2.
Langmuir ; 24(14): 7323-8, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18547088

ABSTRACT

Adsorbed polymer and polyelectrolyte layers on colloidal silica nanoparticles have been studied in the presence of various salts and surfactants using photon correlation spectroscopy and solvent relaxation NMR. Poly(ethylene oxide) (PEO; molar mass 103.6 kg mol (-1)) adsorbed with a relatively high affinity and gave a layer thickness of 4.2 +/- 0.2 nm. While the nonionic surfactant used only increased this thickness slightly, anionic surfactants had a much greater effect, mainly due to repulsions between adsorbed aggregates, leading to expansion of the layer. A nonionic/anionic surfactant mixture was also tested and resulted in a larger increase in layer thickness than any of the individual surfactants. The dominant factor on addition of salt was generally the reduced solvency of PEO, which resulted in a further increase in the layer thickness but in some cases caused flocculation. This was not the case when the surfactant was sodium dodecylbenzenesulfonate; instead screening of the intermicellar repulsions possibly combined with surfactant-cation binding resulted in a reduction in the layer thickness. In comparison the affinity between silica and sodium polystyrenesulfonate was very weak. Anionic surfactants and salts did not noticeably increase the strength of adsorption, but instead encouraged flocculation. The situation was different with a nonionic surfactant, which was able to adsorb to silica itself and apparently facilitated a degree of polyelectrolyte adsorption as well.

3.
Langmuir ; 23(11): 6191-7, 2007 May 22.
Article in English | MEDLINE | ID: mdl-17439259

ABSTRACT

Sodium polyacrylate is well known for its application as a scale inhibitor in common household products, and the effects of both monovalent and divalent metal cations on its structure have been covered by a range of previous publications. In the present article, we extend this work by using solvent relaxation NMR to look at the adsorption of the polyelectrolyte onto both positively and negatively charged silica and how this is altered by calcium chloride. In the anionic case, we found that polyacrylate adsorption was predictably very weak, and interestingly, perhaps counterintuitively, it was further reduced by calcium ions. This is probably linked to NaPA-Ca2+ binding, which changes the conformation and charge of the polyelectrolyte. In contrast, NaPA adsorbs very strongly on cationic silica, to the point that precipitation often occurs, particularly on addition of salt.

4.
Langmuir ; 23(5): 2408-13, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17309202

ABSTRACT

Solvent relaxation NMR and small-angle neutron scattering have been used to characterize adsorbed poly(ethylene oxide) (PEO) layers on silica at a range of surfactant and electrolyte concentrations. Below the critical aggregation concentration (cac), the results suggest that sodium dodecyl sulfate (SDS) interacts relatively weakly, perhaps analogously to a simple salt reducing the solvency of PEO. This is evidenced by a decrease in the adsorbed layer thickness combined with an increase in the bound fraction, although the total adsorbed amount is not greatly affected. The layer thickness goes through a minimum at the cac, after which further SDS addition results in the formation of PEO/SDS aggregates that repel each other and, hence, tend to desorb. The adsorbed amount therefore decreases, from 0.7 mg m(-2) initially to 0.2 mg m(-2) with 32 mM SDS. The aggregates that remain adsorbed also repel, and hence, there is an increase in the layer thickness and the persistence length, while the bound fraction is reduced. In comparison, the effects of electrolyte at the ionic strength studied are relatively minimal. There is, however, evidence that the repulsions between adsorbed PEO/SDS aggregates are partially screened, allowing them to approach each other more readily. This leads to a contraction of the adsorbed layer when the SDS concentration is sufficiently high.

5.
Langmuir ; 22(16): 6923-30, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16863240

ABSTRACT

The effects of various electrolytes on the adsorption of poly(ethylene oxide) onto silica have been studied. The salts were the chlorides of Na+, Mg2+, Ca2+, and La3+. The methods used were adsorption isotherms, found using a depletion method with phosphomolibdic acid, photon correlation spectroscopy, and solvent relaxation NMR. All the salts increased the particle-polymer affinity and adsorbed amount according to the adsorption isotherms, and a linear relationship was found between the initial slope of the isotherms and the ionic strength of the solution. Final adsorbed amounts were approximately 0.4-0.5 mg m(-2). The polymer layer thicknesses as found by PCS were of the same order as the radius of gyration of the polymer and increased with both the concentration and the valency of the salt due to increased adsorption. Solvent relaxation NMR showed that NaCl is too weak to have a noticeable effect on the polymer train layer, but the divalent salts clearly did increase both the strength of solvent binding close to the silica surface and the amount of PEO required to reach the maximum train density.

SELECTION OF CITATIONS
SEARCH DETAIL
...