Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 64(5): 1644-9, 1998 May.
Article in English | MEDLINE | ID: mdl-9572930

ABSTRACT

Dextransucrase (DSR-S) from Leuconostoc mesenteroides NRRL B-512F is a glucosyltransferase that catalyzes synthesis of soluble dextran from sucrose. In the presence of efficient acceptor molecules, such as maltose, the reaction pathway is shifted toward glucooligosaccharide synthesis. Like glucosyltransferases from oral streptococci, DSR-S possesses a C-terminal glucan-binding domain composed of a series of tandem repeats. In order to determine the role of the C-terminal region of DSR-S in dextran or oligosaccharide synthesis, four DSR-S genes with deletions at the 3' end were constructed. The results showed that the C-terminal region modulated the initial velocity of dextran synthesis but that the K(m) for sucrose, the optimum pH, and the activation energy were all unaffected by the deletions. The C-terminal domain modulated the rate of oligosaccharide synthesis whatever acceptor molecule was used (a good acceptor molecule such as maltose or a poor acceptor molecule such as fructose). The C-terminal domain seemed to play no role in the catalytic process in dextran and oligosaccharide synthesis. In fact, it seems that the role of the C-terminal domain of DSR-S may be to facilitate the translation of dextran and oligosaccharides from the catalytic site.


Subject(s)
Dextrans/biosynthesis , Glucosyltransferases/chemistry , Leuconostoc/enzymology , Oligosaccharides/biosynthesis , Amino Acid Sequence , Disaccharides/biosynthesis , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Hydrogen-Ion Concentration , Kinetics , Maltose/pharmacology , Molecular Sequence Data , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...