Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 7(1): 87, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594344

ABSTRACT

When integrating AI tools in healthcare settings, complex interactions between technologies and primary users are not always fully understood or visible. This deficient and ambiguous understanding hampers attempts by healthcare organizations to adopt AI/ML, and it also creates new challenges for researchers to identify opportunities for simplifying adoption and developing best practices for the use of AI-based solutions. Our study fills this gap by documenting the process of designing, building, and maintaining an AI solution called SepsisWatch at Duke University Health System. We conducted 20 interviews with the team of engineers and scientists that led the multi-year effort to build the tool, integrate it into practice, and maintain the solution. This "Algorithm Journey Map" enumerates all social and technical activities throughout the AI solution's procurement, development, integration, and full lifecycle management. In addition to mapping the "who?" and "what?" of the adoption of the AI tool, we also show several 'lessons learned' throughout the algorithm journey maps including modeling assumptions, stakeholder inclusion, and organizational structure. In doing so, we identify generalizable insights about how to recognize and navigate barriers to AI/ML adoption in healthcare settings. We expect that this effort will further the development of best practices for operationalizing and sustaining ethical principles-in algorithmic systems.

2.
JMIR Med Inform ; 8(7): e15182, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32673244

ABSTRACT

BACKGROUND: Successful integrations of machine learning into routine clinical care are exceedingly rare, and barriers to its adoption are poorly characterized in the literature. OBJECTIVE: This study aims to report a quality improvement effort to integrate a deep learning sepsis detection and management platform, Sepsis Watch, into routine clinical care. METHODS: In 2016, a multidisciplinary team consisting of statisticians, data scientists, data engineers, and clinicians was assembled by the leadership of an academic health system to radically improve the detection and treatment of sepsis. This report of the quality improvement effort follows the learning health system framework to describe the problem assessment, design, development, implementation, and evaluation plan of Sepsis Watch. RESULTS: Sepsis Watch was successfully integrated into routine clinical care and reshaped how local machine learning projects are executed. Frontline clinical staff were highly engaged in the design and development of the workflow, machine learning model, and application. Novel machine learning methods were developed to detect sepsis early, and implementation of the model required robust infrastructure. Significant investment was required to align stakeholders, develop trusting relationships, define roles and responsibilities, and to train frontline staff, leading to the establishment of 3 partnerships with internal and external research groups to evaluate Sepsis Watch. CONCLUSIONS: Machine learning models are commonly developed to enhance clinical decision making, but successful integrations of machine learning into routine clinical care are rare. Although there is no playbook for integrating deep learning into clinical care, learnings from the Sepsis Watch integration can inform efforts to develop machine learning technologies at other health care delivery systems.

3.
JAMA Netw Open ; 3(2): e1920733, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32031645

ABSTRACT

Importance: The ability to accurately predict in-hospital mortality for patients at the time of admission could improve clinical and operational decision-making and outcomes. Few of the machine learning models that have been developed to predict in-hospital death are both broadly applicable to all adult patients across a health system and readily implementable. Similarly, few have been implemented, and none have been evaluated prospectively and externally validated. Objectives: To prospectively and externally validate a machine learning model that predicts in-hospital mortality for all adult patients at the time of hospital admission and to design the model using commonly available electronic health record data and accessible computational methods. Design, Setting, and Participants: In this prognostic study, electronic health record data from a total of 43 180 hospitalizations representing 31 003 unique adult patients admitted to a quaternary academic hospital (hospital A) from October 1, 2014, to December 31, 2015, formed a training and validation cohort. The model was further validated in additional cohorts spanning from March 1, 2018, to August 31, 2018, using 16 122 hospitalizations representing 13 094 unique adult patients admitted to hospital A, 6586 hospitalizations representing 5613 unique adult patients admitted to hospital B, and 4086 hospitalizations representing 3428 unique adult patients admitted to hospital C. The model was integrated into the production electronic health record system and prospectively validated on a cohort of 5273 hospitalizations representing 4525 unique adult patients admitted to hospital A between February 14, 2019, and April 15, 2019. Main Outcomes and Measures: The main outcome was in-hospital mortality. Model performance was quantified using the area under the receiver operating characteristic curve and area under the precision recall curve. Results: A total of 75 247 hospital admissions (median [interquartile range] patient age, 59.5 [29.0] years; 45.9% involving male patients) were included in the study. The in-hospital mortality rates for the training validation; retrospective validations at hospitals A, B, and C; and prospective validation cohorts were 3.0%, 2.7%, 1.8%, 2.1%, and 1.6%, respectively. The area under the receiver operating characteristic curves were 0.87 (95% CI, 0.83-0.89), 0.85 (95% CI, 0.83-0.87), 0.89 (95% CI, 0.86-0.92), 0.84 (95% CI, 0.80-0.89), and 0.86 (95% CI, 0.83-0.90), respectively. The area under the precision recall curves were 0.29 (95% CI, 0.25-0.37), 0.17 (95% CI, 0.13-0.22), 0.22 (95% CI, 0.14-0.31), 0.13 (95% CI, 0.08-0.21), and 0.14 (95% CI, 0.09-0.21), respectively. Conclusions and Relevance: Prospective and multisite retrospective evaluations of a machine learning model demonstrated good discrimination of in-hospital mortality for adult patients at the time of admission. The data elements, methods, and patient selection make the model implementable at a system level.


Subject(s)
Hospital Mortality , Hospitalization , Machine Learning , Models, Biological , Adult , Aged , Aged, 80 and over , Area Under Curve , Electronic Health Records , Female , Forecasting , Hospitals , Hospitals, Teaching , Humans , Male , Middle Aged , Prognosis , Prospective Studies , ROC Curve , Retrospective Studies , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...