Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 244: 114878, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36332553

ABSTRACT

N-methylation of the triazole moiety present in our recently described triazole-phenyl-thiazole dimerization disruptors of Leishmania infantum trypanothione disulfide reductase (LiTryR) led to a new class of potent inhibitors that target different binding sites on this enzyme. Subtle structural changes among representative library members modified their mechanism of action, switching from models of classical competitive inhibition to time-dependent mixed noncompetitive inhibition. X-ray crystallography and molecular modeling results provided a rationale for this distinct behavior. The remarkable potency and selectivity improvements, particularly against intracellular amastigotes, of the LiTryR dimerization disruptors 4c and 4d reveal that they could be exploited as leishmanicidal agents. Of note, L. infantum promastigotes treated with 4c significantly reduced their low-molecular-weight thiol content, thus providing additional evidence that LiTryR is the main target of this novel compound.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Disulfides , Antiprotozoal Agents/chemistry , NADH, NADPH Oxidoreductases , Triazoles/pharmacology , Triazoles/metabolism
2.
Eur J Med Chem ; 243: 114675, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36075146

ABSTRACT

Redox homeostasis in trypanosomatids is based on the low-molecular-weight trypanothione, an essential dithiol molecule that is synthetized by trypanothione synthetase (TryS) and maintained in its reduced state by trypanothione disulfide reductase (TryR). The fact that both enzymes are indispensable for parasite survival and absent in the mammalian hosts makes them ideal drug targets against leishmaniasis. Although many efforts have been directed to developing TryR inhibitors, much less attention has been focused on TryS. The screening of an in-house library of 144 diverse molecules using two parallel biochemical assays allowed us to detect 13 inhibitors of L. infantum TryS. Compounds 1 and 3 were characterized as competitive inhibitors with Ki values in the low micromolar range and plausible binding modes for them were identified by automated ligand docking against refined protein structures obtained through computational simulation of an entire catalytic cycle. The proposed binding site for both inhibitors overlaps the polyamine site in the enzyme and, additionally, 1 also occupies part of the ATP site. Compound 4 behaves as a mixed hyperbolic inhibitor with a Ki of 0.8 µM. The activity of 5 is clearly dependent on the concentration of the polyamine substrate, but its kinetic behavior is clearly not compatible with a competitive mode of inhibition. Analysis of the activity of the six best inhibitors against intracellular amastigotes identified 5 as the most potent leishmanicidal candidate, with an EC50 value of 0.6 µM and a selectivity index of 35.


Subject(s)
Amide Synthases , Antiprotozoal Agents , Animals , Amide Synthases/metabolism , NADH, NADPH Oxidoreductases , Binding Sites , Oxidation-Reduction , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Mammals/metabolism
3.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34358115

ABSTRACT

Trypanothione disulfide reductase (TryR) is an essential homodimeric enzyme of trypanosomatid parasites that has been validated as a drug target to fight human infections. Using peptides and peptidomimetics, we previously obtained proof of concept that disrupting protein-protein interactions at the dimer interface of Leishmania infantum TryR (LiTryR) offered an innovative and so far unexploited opportunity for the development of novel antileishmanial agents. Now, we show that linking our previous peptide prototype TRL38 to selected hydrophobic moieties provides a novel series of small-molecule-peptide conjugates that behave as good inhibitors of both LiTryR activity and dimerization.

4.
J Med Chem ; 64(9): 6137-6160, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33945281

ABSTRACT

Inhibition of Leishmania infantum trypanothione disulfide reductase (LiTryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of LiTryR. Several compounds bearing (poly)aromatic substituents dramatically improve the ability to disrupt LiTryR dimerization relative to reference imidazoles. Molecular modeling studies identified an almost unexplored hydrophobic region at the interfacial domain as the putative binding site for these compounds. A subsequent structure-based design led to a symmetrical triazole analogue that displayed even more potent inhibitory activity over LiTryR and enhanced leishmanicidal activity. Remarkably, several of these novel triazole-bearing compounds were able to kill both extracellular and intracellular parasites in cell cultures.


Subject(s)
Drug Design , Leishmania infantum/enzymology , NADH, NADPH Oxidoreductases/chemistry , Protein Multimerization/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Triazoles/chemistry , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line , Humans , Leishmania infantum/drug effects , NADH, NADPH Oxidoreductases/metabolism , Protein Structure, Quaternary , Structure-Activity Relationship
5.
ACS Infect Dis ; 5(6): 873-891, 2019 06 14.
Article in English | MEDLINE | ID: mdl-30983322

ABSTRACT

Disruption of protein-protein interactions of essential oligomeric enzymes by small molecules represents a significant challenge. We recently reported some linear and cyclic peptides derived from an α-helical region present in the homodimeric interface of Leishmania infantum trypanothione reductase ( Li-TryR) that showed potent effects on both dimerization and redox activity of this essential enzyme. Here, we describe our first steps toward the design of nonpeptidic small-molecule Li-TryR dimerization disruptors using a proteomimetic approach. The pyrrolopyrimidine and the 5-6-5 imidazole-phenyl-thiazole α-helix-mimetic scaffolds were suitably decorated with substituents that could mimic three key residues (K, Q, and I) of the linear peptide prototype (PKIIQSVGIS-Nle-K-Nle). Extensive optimization of previously described synthetic methodologies was required. A library of 15 compounds bearing different hydrophobic alkyl and aromatic substituents was synthesized. The imidazole-phenyl-thiazole-based analogues outperformed the pyrrolopyrimidine-based derivatives in both inhibiting the enzyme and killing extracellular and intracellular parasites in cell culture. The most active imidazole-phenyl-thiazole compounds 3e and 3f inhibit Li-TryR and prevent growth of the parasites at low micromolar concentrations similar to those required by the peptide prototype. The intrinsic fluorescence of these compounds inside the parasites visually demonstrates their good permeability in comparison with previous peptide-based Li-TryR dimerization disruptors.


Subject(s)
Imidazoles/pharmacology , Leishmania infantum/drug effects , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Protein Multimerization/drug effects , Pyrimidines/pharmacology , Pyrroles/pharmacology , Thiazoles/pharmacology , Leishmania infantum/enzymology , Protein Interaction Domains and Motifs , Protozoan Proteins/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Small Molecule Libraries/pharmacology
6.
Chem Asian J ; 10(1): 188-97, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25293809

ABSTRACT

4H-Pyranylidene-containing push-pull chromophores built around a bithiophene (BT) π relay or a rigidified thiophene-based unit, namely cyclopenta[1,2-b:3,4-b']dithiophene (CPDT) or dithieno[3,2-b:2',3'-d]pyrrole (DTP), have been synthesized and characterized. The effect of these different relays on the polarization and the second-order nonlinear optical (NLO) properties has been studied. For the sake of comparison, the corresponding reported dithieno[3,2-b:2',3'-d]thiophene (DTT) derivatives have also been included in the discussion. Replacement of the BT core by a rigidified unit (CPDT, DTP) leads to more polarized systems. Calculated NBO charges and electrochemical measurements show that dithienopyrrole has a remarkable donor character that allows an important charge transfer between the donor and the acceptor. The influence of the rigidification of the BT relay on the NLO responses depends on the acceptor strength. For the weakest acceptor used (thiobarbituric acid), passing from the BT relay to the rigidified units always involves an increase in the µß0 figure of merit. Nevertheless, for the strongest acceptor (2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF)), a slight increase in µß0 with respect to the BT chromophore is only observed for the DTP derivative. Thus, rigidification of the BT core is not enough to improve the second-order nonlinearity and the incorporation of a DTP moiety has proven to be the most efficient approach for this purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...