Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Exp Appl Acarol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869730

ABSTRACT

Florida's strawberry industry is currently valued at $511 million annually but faces challenges from pathogens and arthropod pests especially Tetranychus urticae Koch (twospotted spider mite) and Scirtothrips dorsalis Hood (chilli thrips). Predatory mites, particularly Neoseiulus cucumeris Oudemans, Neoseiulus californicus McGregor, and Amblyseius swirskii Athias-Henriot, play a crucial role in pest management. However, there are concerns regarding how these biological control agents are affected by fungicides used in current pathogen management strategies. This study assessed the residual effects of commonly used fungicides in strawberries on the survival, feeding, and oviposition of these predatory mites. Commercially sourced predatory mites were reared on S. dorsalis larvae, and gravid female predators placed on fungicide treated strawberry leaf discs in a Munger cell for 120 h. Fungicides tested included two formulations of Captan, hydrogen peroxide + peroxyacetic acid, cyprodinil + fludioxonil, tetramethylthiuram disulfide, cyflufenamid and a control. All fungicides tested had an impact on the survival, feeding, and oviposition of the predators. Among the fungicide treatments, the lowest predator survival was observed in the cyprodinil + fludioxonil treatment, while the highest was observed in the hydrogen peroxide + peroxyacetic acid and tetramethylthiuram disulfide treatments. In all treatments, feeding and oviposition greatly varied among predators; specifically, N. cucumeris and A. swirskii had the lowest prey consumption, while N. californicus had the highest. These findings highlight the potential incompatibility between fungicides and predatory mites and demonstrate the need for the development of a fungicide rotation program tailored to the different susceptibilities of predators to fungicides.

2.
J Econ Entomol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757658

ABSTRACT

The hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae), is a significant threat to tropical hibiscus (Hibiscus rosa-sinensis) in Florida, USA, since its invasion in 2017. As a regulated pest in the state, early detection is crucial. Based on the success of pheromone-based monitoring programs for other weevil pests, such as the boll weevil, cranberry weevil, and pepper weevil, this study explores the potential use of these pheromone lures for early detection of HBW. To account for differences in efficacy based on trap color, height, and design, different pheromone lure sizes (4 mm, 10 mm, full-size), trap types (Yellow sticky trap, Japanese beetle trap, Boll weevil trap), and heights (0 m, 1.1 m) were also tested in this study. In laboratory assays, males and females exhibited higher attraction to full-size cranberry weevil lure discs than other lure size-type combinations. In semi-field trials, yellow sticky traps baited with cranberry weevil lures captured more weevils than Japanese beetle or boll weevil traps baited with cranberry weevil lures, while trap height did not influence HBW capture. In semi-field, 4-choice bioassays, yellow sticky traps baited with cranberry weevil lures captured more HBW compared to yellow sticky traps baited with pepper weevil, boll weevil, or unbaited traps. Further research is required to thoroughly evaluate the cranberry weevil lure's efficacy in capturing HBW. Our study suggests the potential for utilizing yellow sticky traps baited with lures for early HBW detection and highlights the importance of selecting the appropriate lure, trap type, and height for optimal efficacy.

3.
Insects ; 15(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38249054

ABSTRACT

In 2020, the invasive Thrips parvispinus (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly or indirectly. Direct exposure was performed using a Spray Potter Tower, while indirect exposure was conducted by evaluating residue toxicity against the thrips. Water served as a control. We assessed mortality and leaf-feeding damage 48 h post-treatment. Among the conventional insecticides, chlorfenapyr, sulfoxaflor-spinetoram, and spinosad caused high mortality across all stages in both direct and residue toxicity assays. Pyridalyl, acetamiprid, tolfenpyrad, cyclaniliprole-flonicamid, acephate, novaluron, abamectin, cyantraniliprole, imidacloprid, cyclaniliprole, spirotetramat, and carbaryl displayed moderate toxicity, affecting at least two stages in either exposure route. Additionally, chlorfenapyr, spinosad, sulfoxaflor-spinetoram, pyridalyl, acetamiprid, cyclaniliprole, cyclaniliprole-flonicamid, abamectin, and acephate inhibited larvae and adult's leaf-feeding damage in both direct and residue toxicity assays. Regarding biorational insecticides, mineral oil (3%) and sesame oil caused the highest mortality and lowest leaf-feeding damage. Greenhouse evaluations of spinosad, chlorfenapyr, sulfoxaflor-spinetoram, and pyridalyl are recommended. Also, a rotation program incorporating these products, while considering different modes of action, is advised for ornamental growers to avoid resistance and to comply with regulations.

4.
Exp Appl Acarol ; 92(1): 13-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085417

ABSTRACT

The lychee erinose mite, Aceria litchii (Keifer), is a tiny eriophyid mite known to induce the formation of open galls (erinea) on lychee plants, Litchi chinensis Sonn. In lychee infested by A. litchii, four stages of erineum are observed, based on erineum color: hyaline, white, amber and dark brown. The cause of the color change in erinea is unknown, but it might be linked to the extent of A. litchii infestation. Artificially infested lychee seedlings were used to determine the developmental time, trichome density, and mite population size in each of the four erineum stages. The effect of temperature (15, 25, and 35 °C) on A. litchii population size and erineum developmental time was also investigated. Overall, each erineum stage lasted approximately 50 days and the population size of A. litchii increased gradually through the hyaline, white and amber stages, and a strong decline was observed in dark brown erinea. Visual comparisons of the low-temperature scanning electron microscope (LT-SEM) images revealed that the trichome density was lower in the hyaline stage than in the other stages. Temperature influenced mite population size and amber erinea developmental time. Mite population was lower at 35 °C than at 15 and 25 °C, suggesting that high temperatures promote detrimental effects on A. litchii. Amber erinea developed slower at 15 °C than at 25 and 35 °C. Possible effects of the temperature on A. litchii population in lychee plants are discussed.


Subject(s)
Amber , Mites , Animals , Temperature , Population Density , Cold Temperature
5.
PLoS One ; 18(10): e0292992, 2023.
Article in English | MEDLINE | ID: mdl-37851680

ABSTRACT

The genus Diatraea (Lepidoptera: Crambidae) includes stem borers representing the most critical sugarcane pests in the Americas. Colombia's most widely distributed and damaging Diatraea species include Diatraea saccharalis, D. indigenella, D. busckella, and D. tabernella. The reduced efficacy of biological tools commonly used in controlling several species highlights the importance of evaluating alternative management strategies, such as transgenic plants expressing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The selection of optimal Bt insecticidal proteins for Diatraea control depends on bioassays with purified Bt proteins. Because there is no described artificial diet for borer species other than D. saccharalis and availability of most purified Bt toxins is restricted, this study aimed at developing a bioassay method using fresh corn tissue and providing proof of concept by testing susceptibility to the Cry1Ac insecticidal protein from Bt. Toxicity was evaluated with a single Cry1Ac dose applied directly to corn discs. Stem borer mortality after seven days was higher than 90% for all four tested Diatraea species, while control mortality was below 8%. In addition, we observed that Cry1Ac caused more than 90% weight inhibition in all survivors and delayed development. These results validate the use of this method to determine mortality and growth inhibition due to the consumption of the Cry1Ac protein in each of the Diatraea species. Furthermore, this method could be used to assess other entomopathogenic substances to control these insect pests.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Saccharum , Animals , Insecticides/pharmacology , Endotoxins/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Hemolysin Proteins/genetics , Moths/genetics , Bacillus thuringiensis/genetics , Zea mays/genetics , Plants, Genetically Modified/genetics , Biological Assay , Larva
6.
Biomolecules ; 13(6)2023 06 02.
Article in English | MEDLINE | ID: mdl-37371513

ABSTRACT

Herbivore-Induced Plant Volatiles (HIPVs) are volatile signals emitted by plants to deter herbivores and attract their natural enemies. To date, it is unknown how lychee plants, Litchi chinensis, respond to the induction of leaf galls (erinea) caused by the lychee erinose mite (LEM), Aceria litchii. Aiming to reveal the role of HIPVs in this plant-mite interaction, we investigated changes in the volatile profile of lychee plants infested by LEM and their role on LEM preferences. The volatile profile of uninfested (flower buds, fruit, leaves and new leaf shoots) and infested plant tissue were characterized under different levels of LEM infestation. Volatiles were collected using head-space-solid phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analyses. Fifty-eight volatiles, including terpenoids, alcohols, aldehydes, alkanes, esters, and ketones classes were identified. Using dual-choice bioassays, we investigated the preference of LEM to uninfested plant tissues and to the six most abundant plant volatiles identified. Uninfested new leaf shoots were the most attractive plant tissues to LEM and LEM attraction or repellence to volatiles were mostly influenced by compound concentration. We discuss possible applications of our findings in agricultural settings.


Subject(s)
Litchi , Mites , Animals , Fruit , Plant Leaves/chemistry , Terpenes/analysis
7.
Insects ; 14(6)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37367360

ABSTRACT

In 2017, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae), was found outside of its native range of Mexico and Texas, infesting hibiscus plants in Florida. Therefore, we selected 21 different insecticide and horticultural oil products to evaluate their effects on the reproductive rate, feeding, and oviposition behavior of the HBW. In laboratory experiments, significant mortality was observed in adult weevils exposed to diflubenzuron-treated hibiscus leaves and buds, and hibiscus buds treated with diflubenzuron contained the fewest number of eggs and feeding/oviposition holes. Among horticultural oil products, significant mortality was only observed in experiments in which adult weevils were directly sprayed (direct experiments). Pyrethrins and spinetoram plus sulfoxaflor reduced the oviposition rate and caused significant mortality in direct experiments. Diflubenzuron, pyrethrins, spinetoram plus sulfoxaflor, and spirotetramat were further tested via contact toxicity experiments and greenhouse experiments. Contact toxicity experiments demonstrated that the tested insecticides (except diflubenzuron) were highly toxic to HBW adults. In greenhouse experiments, only those hibiscus plants treated with pyrethrins had significantly fewer feeding/oviposition holes and larvae within their flower buds when compared to control (water-treated) plants. These results constitute an important first step in the identification of effective chemical control options for the HBW.

8.
Ecol Evol ; 12(3): e8760, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35356587

ABSTRACT

Dispersal is the main determinant of the dynamics and persistence of predator-prey metapopulations. When defining dispersal as a predator exploitation strategy, theory predicts the existence of a continuum of strategies: from some dispersal throughout the predator-prey interaction (the Milker strategy) to dispersal only after the prey had been exterminated (the Killer strategy). These dispersal strategies relate to differences in prey exploitation at the population level, with more dispersal leading to longer predator-prey interaction times and higher cumulative numbers of dispersing predators. In the predatory mite Phytoseiulus persimilis, empirical studies have shown genetic variation for prey exploitation as well as for the timing of aerial dispersal in the presence of prey. Here, we test whether artificial selection for lines that differ in timing of dispersal also results in these lines differing in prey exploitation. Six rounds of selection for early or late dispersal resulted in predator lines displaying earlier or later dispersal. Moreover, it resulted-at the population level-in predicted differences in the local predator-prey interaction time and in the cumulative numbers of dispersers in a population dynamics experiment. We pose that timing of dispersal is a heritable trait that can be selected in P. persimilis, which results in lines that show quantitative differences in local predator-prey dynamics. This opens ways to experimentally investigate the evolution of alternative prey exploitation strategies and to select for predator strains with prey exploitation strategies resulting in better biological control.

9.
Insects ; 13(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35055856

ABSTRACT

Originating in northeastern Mexico and southern Texas, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell 1897, was discovered infesting China rose hibiscus (Hibiscus rosa-sinensis L.) in south Florida in May 2017. Although the biologies of the congeneric boll weevil, A. grandis Boheman 1843, and pepper weevil, A. eugenii Cano 1894 are well documented, no data are available regarding the biology of HBW. Here, we present a comprehensive study on the biology of this pest when reared at 10, 15, 27 and 34 °C and on different food sources. This weevil has three larval instars and its life cycle was completed only at 27 ± 1 °C. Weevil development was similar on an artificial diet when compared with a diet of hibiscus buds. Adult HBW could survive solely on pollen, but reproduction did not occur. Without water, HBW survived for ≈15 days; survival times reached nearly 30 days when water was accessible. Our results suggest that if left unmanaged, HBW has the potential to cause significant economic damage to the hibiscus industry. Given that a comprehensive understanding of a pest's biology is critical for development of effective integrated pest management, our results provide a foundation for future research endeavors to mitigate the impact of this weevil in south Florida.

10.
Exp Appl Acarol ; 82(2): 185-198, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32979124

ABSTRACT

Cannibalism is a widespread phenomenon in nature, often occurring when food is scarce, for example among predators that have overexploited a local prey population. Instead of cannibalising, predators can disperse, thereby avoiding being cannibalised or cannibalising related conspecifics, which results in inclusive fitness loss. Theory on prey exploitation in ephemeral predator-prey systems predicts that predators may be selected to display prudent predation by dispersing early, thus saving food for their remaining offspring. This is especially advantageous when average relatedness in the local population is high. Less prudent predators refrain from dispersing until all prey are exterminated. These prey exploitation strategies may also have repercussions for cannibalism, especially when it is driven by food shortage. We therefore investigated to what extent adult females and males cannibalise or disperse after prey have been exterminated locally. We used two lines of the haplodiploid predatory mite Phytoseiulus persimilis that were selected for early and late dispersal, respectively. In wind tunnels, we observed the cannibalistic and dispersal behaviour of individual adult predators of these lines on a rose leaf with only conspecific larvae as food. Both selection lines behaved similarly, indicating that selection on dispersal behaviour did not result in correlated effects on cannibalism behaviour. Male predators stayed significantly longer on the leaf and engaged more often in cannibalism than females. The results suggest that there might be gender-specific differences in cannibalistic tendency in relation to dispersal. Future theoretical studies on the evolution of cannibalism and dispersal should take differences between the genders into account.


Subject(s)
Animal Distribution , Cannibalism , Mites/physiology , Animals , Female , Larva , Male , Predatory Behavior , Sex Factors
11.
Insects ; 11(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283590

ABSTRACT

The lychee erinose mite (LEM), Aceria litchii (Keifer) is a serious pest of lychee (Litchi chinensis Sonn.). LEM causes a type of gall called 'erineum' (abnormal felty growth of trichomes from the epidermis), where it feeds, reproduces and protects itself from biotic and abiotic adversities. In February of 2018, LEM was found in a commercial lychee orchard on Pine Island, Florida. Infestations were recorded on young leaves, stems, and inflorescences of approximately 30 young trees (1.5-3.0 yrs.) of three lychee varieties presenting abundant new growth. Although LEM is present in Hawaii, this mite is a prioritized quarantine pest in the continental USA and its territories. Florida LEM specimens showed small morphological differences from the original taxonomic descriptions of Keifer (1943) and Huang (2008). The observed differences are probably an artifact of the drawings in the original descriptions. Molecular comparisons were conducted on the DNA of LEM specimens from India, Hawaii, Brazil, Taiwan, Australia and Florida. The amplified COI fragment showed very low nucleotide variation among the locations and thus, could be used for accurate LEM identification. The ITS1 sequences and partial 5.8S fragments displayed no nucleotide differences for specimens from any of the locations except Australia. Consistent differences were observed in the ITS2 and 28S fragments. The ITS1-ITS2 concatenated phylogeny yielded two lineages, with Australia in one group and Hawaii, India, Brazil, Florida and Taiwan in another. Specimens from Taiwan and Florida present identical ITS and rDNA segments, suggesting a common origin; however, analysis of additional sequences is needed to confirm the origin of the Florida population.

12.
J Econ Entomol ; 113(1): 126-133, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31586186

ABSTRACT

Citrus leprosis is a destructive disease of citrus caused by several viruses (CiLVs) that are quarantine pests in the United States. Brevipalpus yothersi Baker (Acari: Tenuipalpidae) vectors the most virulent strain of CiLV. This mite is present in the United States and could facilitate the spread of the disease if CiLV reaches the country. Postharvest treatments could mitigate B. yothersi on imported commodities from areas where CiLV exists. The current study explores the effectiveness of hot-water immersion as a postharvest treatment against B. yothersi. Lemons were immersed in water at 21, 48, 53, or 63°C for 5, 10, and 15 min. Immersions at 53 and 63°C for all time schedules dislodged over 99% of adult mites. Lemon fruit quality and B. yothersi egg viability after hot-water immersion were also evaluated. Fruit quality significantly decreased in lemons treated at 63°C resulting in decay (grade 3, rejection), while at 53°C there was a quality reduction (grade 2, minimum acceptable market level) compared to lemons immersed at 21°C or nontreated controls (grade 1). None of the eggs hatched when the lemons were immersed in water at 63°C and an average of 1.5% hatched at 53°C for all time schedules. Immersion in water at 53°C for 5 min dislodged 99.71% and 57.14% of adult and immature mites, respectively, and resulted in 98.11% unhatched eggs without significant fruit quality reduction. Hot-water immersion could be a key component in a systems approach to control B. yothersi on imported citrus fruits from countries where citrus leprosis is present.


Subject(s)
Citrus , Mites , Animals , Fruit , Quarantine
13.
Ecol Evol ; 8(21): 10384-10394, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30464812

ABSTRACT

When predators commonly overexploit local prey populations, dispersal drives the dynamics in local patches, which together form a metapopulation. Two extremes in a continuum of dispersal strategies are distinguished: the "Killer" strategy, where predators only start dispersing when all prey are eliminated, and the "Milker" strategy, in which predator dispersal occurs irrespective of prey availability. Theory shows that the Milker strategy is not evolutionarily stable if local populations are well connected by dispersal. Using strains of the predatory mite Phytoseiulus persimilis, collected from 11 native populations from coastal areas in Turkey and Sicily, we investigated whether these two strategies occur in nature. In small wind tunnels, we measured dispersal rates and population dynamics of all populations in a system consisting of detached rose leaves, spider mites (Tetranychus urticae) as prey, and P. persimilis. We found significant variation in the exploitation and dispersal strategies among predator populations, but none of the collected strains showed the extreme Killer or Milker strategy. The results suggest that there is genetic variation for prey exploitation and dispersal strategies. Thus, different dispersal strategies in the Milker-Killer continuum may be selected for under natural conditions. This may affect the predator-prey dynamics in local populations and is likely to determine persistence of predator-prey systems at the metapopulation level.

SELECTION OF CITATIONS
SEARCH DETAIL
...