Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
Diabetes Care ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861550

ABSTRACT

OBJECTIVE: To characterize distinct islet autoantibody profiles preceding stage 3 type 1 diabetes. RESEARCH DESIGN AND METHODS: The T1DI (Type 1 Diabetes Intelligence) study combined data from 1,845 genetically susceptible prospectively observed children who were positive for at least one islet autoantibody: insulin autoantibody (IAA), GAD antibody (GADA), or islet antigen 2 antibody (IA-2A). Using a novel similarity algorithm that considers an individual's temporal autoantibody profile, age at autoantibody appearance, and variation in the positivity of autoantibody types, we performed an unsupervised hierarchical clustering analysis. Progression rates to diabetes were analyzed via survival analysis. RESULTS: We identified five main clusters of individuals with distinct autoantibody profiles characterized by seroconversion age and sequence of appearance of the three autoantibodies. The highest 5-year risk from first positive autoantibody to type 1 diabetes (69.9%; 95% CI 60.0-79.2) was observed in children who first developed IAA in early life (median age 1.6 years) followed by GADA (1.9 years) and then IA-2A (2.1 years). Their 10-year risk was 89.9% (95% CI 81.9-95.4). A high 5-year risk was also found in children with persistent IAA and GADA (39.1%) and children with persistent GADA and IA-2A (30.9%). A lower 5-year risk (10.5%) was observed in children with a late appearance of persistent GADA (6.1 years). The lowest 5-year diabetes risk (1.6%) was associated with positivity for a single, often reverting, autoantibody. CONCLUSIONS: The novel clustering algorithm identified children with distinct islet autoantibody profiles and progression rates to diabetes. These results are useful for prediction, selection of individuals for prevention trials, and studies investigating various pathways to type 1 diabetes.

2.
J Endocr Soc ; 8(7): bvae103, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38867880

ABSTRACT

Context: The 2 peaks of type 1 diabetes incidence occur during early childhood and puberty. Objective: We sought to better understand the relationship between puberty, islet autoimmunity, and type 1 diabetes. Methods: The relationships between puberty, islet autoimmunity, and progression to type 1 diabetes were investigated prospectively in children followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Onset of puberty was determined by subject self-assessment of Tanner stages. Associations between speed of pubertal progression, pubertal growth, weight gain, homeostasis model assessment of insulin resistance (HOMA-IR), islet autoimmunity, and progression to type 1 diabetes were assessed. The influence of individual factors was analyzed using Cox proportional hazard ratios. Results: Out of 5677 children who were still in the study at age 8 years, 95% reported at least 1 Tanner Stage score and were included in the study. Children at puberty (Tanner Stage ≥2) had a lower risk (HR 0.65, 95% CI 0.45-0.93; P = .019) for incident autoimmunity than prepubertal children (Tanner Stage 1). An increase of body mass index Z-score was associated with a higher risk (HR 2.88, 95% CI 1.61-5.15; P < .001) of incident insulin autoantibodies. In children with multiple autoantibodies, neither HOMA-IR nor rate of progression to Tanner Stage 4 were associated with progression to type 1 diabetes. Conclusion: Rapid weight gain during puberty is associated with development of islet autoimmunity. Puberty itself had no significant influence on the appearance of autoantibodies or type 1 diabetes. Further studies are needed to better understand the underlying mechanisms.

3.
Diabetologia ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819466

ABSTRACT

AIMS/HYPOTHESIS: Delivery by Caesarean section continues to rise globally and has been associated with the risk of developing type 1 diabetes and the rate of progression from pre-symptomatic stage 1 or 2 type 1 diabetes to symptomatic stage 3 disease. The aim of this study was to examine the association between Caesarean delivery and progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. METHODS: Caesarean section was examined in 8135 children from the TEDDY study who had an increased genetic risk for type 1 diabetes and were followed from birth for the development of islet autoantibodies and type 1 diabetes. RESULTS: The likelihood of delivery by Caesarean section was higher in children born to mothers with type 1 diabetes (adjusted OR 4.61, 95% CI 3.60, 5.90, p<0.0001), in non-singleton births (adjusted OR 4.35, 95% CI 3.21, 5.88, p<0.0001), in premature births (adjusted OR 1.91, 95% CI 1.53, 2.39, p<0.0001), in children born in the USA (adjusted OR 2.71, 95% CI 2.43, 3.02, p<0.0001) and in children born to older mothers (age group >28-33 years: adjusted OR 1.19, 95% CI 1.04, 1.35, p=0.01; age group >33 years: adjusted OR 1.80, 95% CI 1.58, 2.06, p<0.0001). Caesarean section was not associated with an increased risk of developing pre-symptomatic early-stage type 1 diabetes (risk by age 10 years 5.7% [95% CI 4.6%, 6.7%] for Caesarean delivery vs 6.6% [95% CI 6.0%, 7.3%] for vaginal delivery, p=0.07). Delivery by Caesarean section was associated with a modestly increased rate of progression to stage 3 type 1 diabetes in children who had developed multiple islet autoantibody-positive pre-symptomatic early-stage type 1 diabetes (adjusted HR 1.36, 95% CI 1.03, 1.79, p=0.02). No interaction was observed between Caesarean section and non-HLA SNPs conferring susceptibility for type 1 diabetes. CONCLUSIONS/INTERPRETATION: Caesarean section increased the rate of progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. DATA AVAILABILITY: Data from the TEDDY study ( https://doi.org/10.58020/y3jk-x087 ) reported here will be made available for request at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository (NIDDK-CR) Resources for Research (R4R) ( https://repository.niddk.nih.gov/ ).

4.
Article in English | MEDLINE | ID: mdl-38615728

ABSTRACT

BACKGROUND & AIMS: Celiac disease (CD) mass screening remains controversial in part because of a paucity of data to support its benefit. The Autoimmunity Screening for Kids study is a mass screening study for pediatric CD and type 1 diabetes in Colorado. METHODS: This study prospectively follows up children ages 1 to 17 years who screened positive for tissue transglutaminase IgA autoantibodies in the Autoimmunity Screening for Kids study subsequently referred for diagnostic evaluation. Children diagnosed with CD by biopsy or serologic criteria were included in this study. Evaluation at baseline and 12 month follow-up evaluation included demographics, laboratory studies, symptoms, health-related quality of life, anxiety/depression, and gluten-free diet adherence. Paired Student t test, chi-square, and Wilcoxon sign rank tests compared baseline and follow-up data. For symptom scores, odds of improvement were assessed. RESULTS: Of the 52 children with CD enrolled, 42 children completed 12-month follow-up evaluation. On the symptom questionnaire completed at diagnostic evaluation, 38 of 42 children reported 1 or more symptoms. CD mean symptom severity and frequency scores improved from baseline to follow-up evaluation (P < .001). Reported health-related quality of life scores improved among caregivers (P = .002). There was no significant change in reported anxiety or depression. Iron deficiency without anemia was common at baseline (21 of 24 children; 87.5%) and normalized at follow-up evaluation (11 of 21 children; 52.3%). Twenty-six of 28 families reported good or excellent gluten-free diet adherence. CONCLUSIONS: This novel study of children with CD identified through a mass screening program demonstrated improvement in symptoms, quality of life, and iron deficiency after 1 year follow-up evaluation. This demonstrates that there may be benefit to CD mass screening.

5.
Article in English | MEDLINE | ID: mdl-38470864

ABSTRACT

CONTEXT: In Colorado children, the prevalence of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes (T1D) has been increasing over time. OBJECTIVE: Evaluate the prevalence of and factors involved in DKA at T1D diagnosis among participants followed in monitoring research studies before diagnosis compared to patients from the community. SETTING AND PARTICIPANTS: Patients < 18 years diagnosed with T1D between 2005 and 2021 at the Barbara Davis Center for Diabetes. OUTCOME: Prevalence of and factors associated with DKA at diagnosis among participants in preclinical monitoring studies compared to those diagnosed in the community. RESULTS: Of 5049 subjects, 164 were active study participants, 42 inactive study participants, and 4843 were community patients. Active study participants, compared to community patients, had lower HbA1c (7.3% vs 11.9%]; P < 0.001) and less frequently experienced DKA (4.9% vs 48.5%; P < 0.001), including severe DKA (1.2% vs 16.2%; P < 0.001). Inactive study participants had intermediate levels for both prevalence and severity of DKA. DKA prevalence increased in community patients, from 44.0% to 55%, with less evidence for a temporal trend in study participants. DKA prevalence was highest in children <2 years (13% in active study participants vs 83% in community patients). In community patients, younger age (P = 0.0038), public insurance (P < 0.0001), rural residence (P < 0.0076), higher HbA1c (P < 0.0001), and ethnicity minority status (P < 0.0001) were associated with DKA at diagnosis. CONCLUSIONS: While DKA prevalence increases in community patients over time, it stayed <5% in active research participants, who have a 10 times lower prevalence of DKA at diagnosis, including in minorities.

6.
iScience ; 27(2): 108769, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303689

ABSTRACT

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

7.
Eur J Nutr ; 63(4): 1329-1338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413484

ABSTRACT

PURPOSE: The aim was to study the association between dietary intake of B vitamins in childhood and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D) by the age of 10 years. METHODS: We followed 8500 T1D-susceptible children born in the U.S., Finland, Sweden, and Germany in 2004 -2010 from the Environmental Determinants of Diabetes in the Young (TEDDY) study, which is a prospective observational birth cohort. Dietary intake of seven B vitamins was calculated from foods and dietary supplements based on 24-h recall at 3 months and 3-day food records collected regularly from 6 months to 10 years of age. Cox proportional hazard models were adjusted for energy, HLA-genotype, first-degree relative with T1D, sex, and country. RESULTS: A total of 778 (9.2) children developed at least one autoantibody (any IA), and 335 (3.9%) developed multiple autoantibodies. 280 (3.3%) children had IAA and 319 (3.8%) GADA as the first autoantibody. 344 (44%) children with IA progressed to T1D. We observed that higher intake of niacin was associated with a decreased risk of developing multiple autoantibodies (HR 0.95; 95% CI 0.92, 0.98) per 1 mg/1000 kcal in niacin intake. Higher intake of pyridoxine (HR 0.66; 95% CI 0.46, 0.96) and vitamin B12 (HR 0.87; 95% CI 0.77, 0.97) was associated with a decreased risk of IAA-first autoimmunity. Higher intake of riboflavin (HR 1.38; 95% CI 1.05, 1.80) was associated with an increased risk of GADA-first autoimmunity. There were no associations between any of the B vitamins and the outcomes "any IA" and progression from IA to T1D.  CONCLUSION: In this multinational, prospective birth cohort of children with genetic susceptibility to T1D, we observed some direct and inverse associations between different B vitamins and risk of IA.


Subject(s)
Autoantibodies , Autoimmunity , Diabetes Mellitus, Type 1 , Islets of Langerhans , Vitamin B Complex , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/epidemiology , Male , Female , Vitamin B Complex/administration & dosage , Prospective Studies , Child , Child, Preschool , Infant , Islets of Langerhans/immunology , Autoantibodies/blood , Risk Factors , Diet/methods , Diet/statistics & numerical data , Proportional Hazards Models , United States/epidemiology , Finland/epidemiology , Sweden/epidemiology , Germany/epidemiology , Dietary Supplements , Birth Cohort , Disease Progression
8.
Nat Commun ; 15(1): 1577, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383452

ABSTRACT

We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.


Subject(s)
Bacteriophages , Peptide Library , Humans , Epitopes , Amino Acid Sequence , Peptides/genetics , Antibodies , Bacteriophages/genetics , Epitope Mapping/methods
9.
Diabetes Metab Res Rev ; 40(1): e3716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649398

ABSTRACT

Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/genetics , Pancreas/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism
10.
medRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38076918

ABSTRACT

Aim/hypothesis: Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development. Here, we investigate the GDF15 signaling in pancreatic islets towards opening possibilities for therapeutic targeting in ß cells and to understand why this protection fails to occur naturally. Methods: GDF15 signaling in islets was determined by proximity-ligation assay, untargeted proteomics, pathway analysis, and treatment of cells with specific inhibitors. To determine if GDF15 levels would increase prior to disease onset, plasma levels of GDF15 were measured in a longitudinal prospective study of children during T1D development (n=132 cases vs. n=40 controls) and in children with islet autoimmunity but normoglycemia (n=47 cases vs. n=40 controls) using targeted mass spectrometry. We also investigated the regulation of GDF15 production in islets by fluorescence microscopy and western blot analysis. Results: The proximity-ligation assay identified ERBB2 as the GDF15 receptor in islets, which was confirmed using its specific antagonist, tucatinib. The untargeted proteomics analysis and caspase assay showed that ERBB2 activation by GDF15 reduces ß cell apoptosis by downregulating caspase 8. In plasma, GDF15 levels were higher (p=0.0024) during T1D development compared to controls, but not in islet autoimmunity with normoglycemia. However, in the pancreatic islets GDF15 was depleted via sequestration of its mRNA into stress granules, resulting in translation halting. Conclusions/interpretation: GDF15 protects against T1D via ERBB2-mediated decrease of caspase 8 expression in pancreatic islets. Circulating levels of GDF15 increases pre-T1D onset, which is insufficient to promote protection due to its localized depletion in the islets. These findings open opportunities for targeting GDF15 downstream signaling for pancreatic ß cell protection in T1D and help to explain the lack of natural protection by the endogenous protein.

11.
Am J Clin Nutr ; 118(6): 1099-1105, 2023 12.
Article in English | MEDLINE | ID: mdl-38044022

ABSTRACT

BACKGROUND: Higher gluten intake in childhood is associated with increased incidence of celiac disease autoimmunity (CDA) and celiac disease. It remains to be studied whether different dietary patterns independent of gluten intake contribute to the incidence. OBJECTIVES: This study aimed to explore associations of dietary patterns by age 2 y with risk of CDA and celiac disease in genetically susceptible children. METHODS: Data was used from 6726 participants at genetic risk of type 1 diabetes and celiac disease enrolled in the observational cohort, The Environmental Determinants of Diabetes in the Young (TEDDY) study. Children were annually screened for tissue transglutaminase autoantibodies (tTGAs) from age 2 y. Principal component analysis extracted dietary patterns, based on intake of 27 food groups assessed by 3-d food records at age 9 to 24 mo. The primary outcome was CDA (i.e., persistently tTGA-positive in at least 2 consecutive samples), and the secondary outcome was celiac disease. During follow-up to mean age 11.0 (standard deviation 3.6) y, 1296 (19.3%) children developed CDA, and 529 (7.9%) were diagnosed with celiac disease. Associations of adherence to dietary patterns (per 5-unit increase) with the study outcomes were estimated by Cox regression models adjusted for risk factors including gluten intake. RESULTS: At age 9 mo, a dietary pattern higher in the food groups vegetable fats and milk was associated with reduced risk of CDA (hazard ratio [HR]: 0.88; 95% confidence interval [CI]: 0.79, 0.98; P = 0.02). At 24 mo, a dietary pattern higher in the food groups wheat, vegetable fats, and juices, and lower in milk, meat, and oats at age 24 mo was associated with increased risk of CDA (HR: 1.18; 95% CI: 1.05, 1.33; P < 0.001) and celiac disease (HR: 1.24; 95% CI: 1.03, 1.50; P = 0.03). CONCLUSIONS: Dietary patterns in early childhood are associated with risk of CDA and celiac disease in genetically predisposed children, independent of gluten intake.


Subject(s)
Celiac Disease , Child , Humans , Child, Preschool , Adolescent , Young Adult , Adult , Infant , Celiac Disease/etiology , Autoimmunity , Transglutaminases/genetics , Autoantibodies/genetics , Genetic Predisposition to Disease , Glutens/adverse effects
12.
Sci Adv ; 9(49): eadj6975, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064552

ABSTRACT

T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRß sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRß sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRß sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRß sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Peptides
13.
Nat Commun ; 14(1): 7630, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993433

ABSTRACT

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Enterovirus Infections , Islets of Langerhans , Humans , Child , Autoantibodies , Transcriptome , Autoimmunity/genetics , Insulin/metabolism , Enterovirus Infections/genetics , Islets of Langerhans/metabolism
14.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808738

ABSTRACT

Humans are colonized with commensal bacteria soon after birth, and, while this colonization is affected by lifestyle and other factors, bacterial colonization proceeds through well-studied phases. However, less is known about phage communities in early human development due to small study sizes, inability to leverage large databases, and lack of appropriate bioinformatics tools. In this study, whole genome shotgun sequencing data from the TEDDY study, composed of 12,262 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage and bacterial dynamics simultaneously. Reads from these samples were mapped to marker genes from both bacteria and a new database of tens of thousands of phage taxa from human microbiomes. We uncover that each child is colonized by hundreds of different phages during the early years, and phages are more transitory than bacteria. Participants' samples continually harbor new phage species over time whereas the diversification of bacterial species begins to saturate. Phage data improves the ability for machine learning models to discriminate samples by country. Finally, while phage populations were individual-specific, striking patterns arose from the larger dataset, showing clear trends of ecological succession amongst phages, which correlated well with putative host bacteria. Improved understanding of phage-bacterial relationships may reveal new means by which to shape and modulate the microbiome and its constituents to improve health and reduce disease, particularly in vulnerable populations where antibiotic use and/or other more drastic measures may not be advised.

15.
Diabetes Care ; 46(12): 2155-2161, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37673098

ABSTRACT

OBJECTIVE: To assess anxiety and risk perception among parents whose children screened positive for islet autoantibodies, indicating elevated risk for type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: The Autoimmunity Screening for Kids (ASK) study identified 319 children age 1 to 17 years at risk for T1D via screening for islet autoantibodies; 280 children with confirmed islet autoantibodies and their caregivers enrolled in a follow-up education and monitoring program to prevent diabetic ketoacidosis at diagnosis. Parents completed questionnaires at each monitoring visit, including a 6-item version of the State Anxiety Inventory (SAI), to assess anxiety about their child developing T1D, and a single question to assess risk perception. RESULTS: At the first ASK follow-up monitoring visit, mean parental anxiety was elevated above the clinical cutoff of 40 (SAI 46.1 ± 11.2). At the second follow-up monitoring visit (i.e., visit 2), mean anxiety remained elevated but started to trend down. Approximately half (48.9%) of parents reported their child was at increased risk for T1D at the initial follow-up monitoring visit (visit 1). Parents of children with more than one islet autoantibody and a first-degree relative with T1D were more likely to report their child was at increased risk. CONCLUSIONS: Most parents of autoantibody-positive children have high anxiety about their child developing T1D. Information about the risk of developing T1D is difficult to convey, as evidenced by the wide range of risk perception reported in this sample.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Infant , Child, Preschool , Adolescent , Diabetes Mellitus, Type 1/epidemiology , Autoantibodies , Parents , Anxiety/diagnosis , Perception
16.
Diabetes Technol Ther ; 25(11): 790-799, 2023 11.
Article in English | MEDLINE | ID: mdl-37695674

ABSTRACT

Objective: The article provides practical guidance for (1) interpreting and confirming islet autoantibody screening results for type 1 diabetes (T1D) and (2) follow-up of individuals with early stages of T1D with the goal of ensuring medical safety and providing patients and their families with an assessment of risk for progression to a clinical diagnosis of T1D. Research Design and Methods: We used an explicit a priori methodology to identify areas of agreement and disagreement in how to manage patients with early T1D. We used a modified Delphi method, which is a systematic, iterative approach to identifying consensus. We developed a list of topic questions, ranked them by importance, and developed consensus statements based on available evidence and expert opinion around each of the 30 topic questions consistently ranked as being most important. Results: Consensus statements for screening and monitoring are supported with figures proposing an algorithm for confirmation of T1D diagnosis and management of early T1D until clinical diagnosis. Conclusions: Disseminating and increasing knowledge related to how to interpret T1D screening tests, confirm early T1D diagnosis and monitor for medical safety and clinical disease risk prediction is critically important as there are currently no clinical recommendations. Published guidance will promote better management of T1D screening-detected individuals.


Subject(s)
Diabetes Mellitus, Type 1 , Prediabetic State , Humans , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/therapy , Practice Guidelines as Topic , Prediabetic State/diagnosis , Prediabetic State/therapy
17.
Diagnostics (Basel) ; 13(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37685398

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease that attacks the insulin-producing b cells of the pancreatic islets. Autoantibodies to b cell proteins typically appear in the circulation years before disease onset, and serve as the most accurate biomarkers of T1D risk. Our laboratory has recently discovered novel b cell proteins comprising hybrid proinsulin:islet amyloid polypeptide peptides (IAPP). T cells from a diabetic mouse model and T1D patients are activated by these hybrid peptides. In this study, we asked whether these hybrid molecules could serve as antigens for autoantibodies in T1D and prediabetic patients. We analyzed sera from T1D patients, prediabetics and healthy age-matched donors. Using a highly sensitive electrochemiluminescence assay, sera were screened for binding to recombinant proinsulin:IAPP probes or truncated derivatives. Our results show that sera from T1D patients contain antibodies that bind larger hybrid proinsulin:IAPP probes, but not proinsulin or insulin, at significantly increased frequencies compared to normal donors. Examination of sera from prediabetic patients confirms titers of antibodies to these hybrid probes in more than 80% of individuals, often before seroconversion. These results suggest that hybrid insulin peptides are common autoantigens in T1D and prediabetic patients, and that antibodies to these peptides may serve as valuable early biomarkers of the disease.

18.
Clin Proteomics ; 20(1): 38, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735622

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic ß cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. METHODS: This systematic review was registered with Open Science Framework ( https://doi.org/10.17605/OSF.IO/N8TSA ). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. RESULTS: A total of 13 studies met our inclusion criteria, resulting in the identification of 266 unique proteins, with 31 (11.6%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found 2 subsets: 17 proteins (C3, C1R, C8G, C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, APOE, TETN, C1S, C6A3, SAA4, ALS, SEPP1 and PI16) and 3 proteins (C3, CLUS and C4A) have consistent regulation in at least 2 independent studies at post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. CONCLUSIONS: Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.

20.
Diabetes Care ; 46(10): 1839-1847, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37579501

ABSTRACT

OBJECTIVE: To study the interaction among HLA genotype, early probiotic exposure, and timing of complementary foods in relation to risk of islet autoimmunity (IA). RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young (TEDDY) study prospectively follows 8,676 children with increased genetic risk of type 1 diabetes. We used a Cox proportional hazards regression model adjusting for potential confounders to study early feeding and the risk of IA in a sample of 7,770 children. RESULTS: Any solid food introduced early (<6 months) was associated with increased risk of IA if the child had the HLA DR3/4 genotype and no probiotic exposure during the 1st year of life. Rice introduced at 4-5.9 months compared with later in the U.S. was associated with an increased risk of IA. CONCLUSIONS: Timing of solid food introduction, including rice, may be associated with IA in children with the HLA DR3/4 genotype not exposed to probiotics. The microbiome composition under these exposure combinations requires further study.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Infant , Autoantibodies/genetics , Autoimmunity/genetics , Genetic Predisposition to Disease , Genotype , HLA-DR3 Antigen/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...