Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Physiol ; 14: 1130175, 2023.
Article in English | MEDLINE | ID: mdl-37228816

ABSTRACT

Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.

3.
J Oral Biol Craniofac Res ; 13(2): 169-176, 2023.
Article in English | MEDLINE | ID: mdl-36654816

ABSTRACT

Introduction: Primary Failure of Eruption (PFE) is a rare condition affecting posterior teeth eruption resulting in a posterior open bite malocclusion. Differential diagnosis like ankylosis or mechanical eruption failure should be considered. For non-syndromic forms, mutations in PTH1R, and recently in KMT2C genes are the known etiologies. The aim of this work was to describe the variability of clinical presentations of PFE associated with pathogenic variants of PTHR1. Material and methods: Diagnosis of non-syndromic PFE has been suggested for three members of a single family. Clinical and radiological features were collected, and genetic analyses were performed. Results: The clinical phenotype (type and number of involved teeth, depth of bone inclusions, functional consequences) is variable within the family. Severe tooth resorptions were detected. A heterozygous substitution in PTH1R (NM_000316.3): c.899T > C was identified as a class 4 likely pathogenic variant. The multidisciplinary management is described involving oral biology, pediatric dentistry, orthodontics, oral surgery, and prosthodontics. Conclusion: In this study, we report a new PTH1R variant involved in a familial form of PFE with variable expressivity. Therapeutic care is complex and difficult to systematize, hence the lack of evidence-based recommendations and clinical guidelines.

4.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Article in English | MEDLINE | ID: mdl-34042254

ABSTRACT

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Subject(s)
Anodontia/diagnosis , Anodontia/genetics , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Genetic Variation , Phenotype , Proteins/genetics , Alleles , Amino Acid Substitution , Cohort Studies , Female , Genetic Association Studies , Genetic Loci , Humans , Male , Mutation , Pedigree , Radiography
5.
Methods Mol Biol ; 1922: 407-452, 2019.
Article in English | MEDLINE | ID: mdl-30838594

ABSTRACT

Rare genetic disorders are often challenging to diagnose. Anomalies of tooth number, shape, size, mineralized tissue structure, eruption, and resorption may exist as isolated symptoms or diseases but are often part of the clinical synopsis of numerous syndromes (Bloch-Zupan A, Sedano H, Scully C. Dento/oro/craniofacial anomalies and genetics, 1st edn. Elsevier, Boston, MA, 2012). Concerning amelogenesis imperfecta (AI), for example, mutations in a number of genes have been reported to cause isolated AI, including AMELX, ENAM, KLK4, MMP20, FAM83H, WDR72, C4orf26, SLC24A4, and LAMB3. In addition, many other genes such as DLX3, CNNM4, ROGDI, FAM20A, STIM1, ORAI1, and LTBP3 have been shown to be involved in developmental syndromes with enamel defects. The clinical presentation of the enamel phenotype (hypoplastic, hypomineralized, hypomature, or a combination of severities) alone does not allow a reliable prediction of possible causative genetic mutations. Understanding the potential genetic cause(s) of rare diseases is critical for overall health management of affected patient. One effective strategy to reach a genetic diagnosis is to sequence a selected gene panel chosen for a determined range of phenotypes. Here we describe a laboratory protocol to set up a specific gene panel for orodental diseases.


Subject(s)
Craniofacial Abnormalities/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Rare Diseases/genetics , Tooth Abnormalities/genetics , Amelogenesis Imperfecta/diagnosis , Amelogenesis Imperfecta/genetics , Craniofacial Abnormalities/diagnosis , DNA/genetics , Equipment Design , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Rare Diseases/diagnosis , Tooth Abnormalities/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...