Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35214878

ABSTRACT

Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR.

2.
Plant Physiol Biochem ; 168: 1-9, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34607206

ABSTRACT

Plants are sessile organisms that, to survive they develop response mechanisms under water deficit conditions. Plant proteases play an essential role in a diversity of biological processes, among them tolerance to drought stress. Proteolysis is a critical regulator of stomatal development. Plant proteases are involved in the crosstalk among phytohormones and adjustment of stomatal aperture. Plant proteases are also related to the increment in reactive oxygen species (ROS) production detected in the plant biochemical response to drought. Plant proteases mitigate this process by degrading damaged, denatured, and aggregated proteins, remobilizing amino acids, and generating molecules involved in signal transductions. Although many roles for proteases have been proposed, molecular bases that regulate these mechanisms remain unknown. In this review, we summarize the current knowledge on the participation of proteases in the signaling pathways of plants in response to water deficit and their relationship with plant stress tolerance.


Subject(s)
Droughts , Peptide Hydrolases , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Proteins/metabolism , Plants/metabolism , Stress, Physiological
3.
PLoS One ; 14(9): e0222346, 2019.
Article in English | MEDLINE | ID: mdl-31513656

ABSTRACT

Micro RNAs (miRNAs) are small single strand non-coding RNAs that regulate gene expression at the post-transcriptional level, either by translational inhibition or mRNA degradation based on the extent of complementarity between the miRNA and its target mRNAs. Potato (Solanum tuberosum L.) is the most important horticultural crop in Argentina. Achieving an integrated control of diseases is crucial for this crop, where frequent agrochemical applications, particularly fungicides, are carried out. A promising strategy is based on promoting induced resistance through the application of environmentally friendly compounds such as phosphites, inorganic salts of phosphorous acid. The use of phosphites in disease control management has proven to be effective. Although the mechanisms underlying their effect remain unclear, we postulated that miRNAs could be involved. Therefore we performed next generation sequencing (NGS) in potato leaves treated and non treated with potassium phosphite (KPhi). We identified 25 miRNAs that were expressed differentially, 14 already annotated in miRBase and 11 mapped to the potato genome as potential new miRNAs. A prediction of miRNA targets showed genes related to pathogen resistance, transcription factors, and oxidative stress. We also analyzed in silico stress and phytohormone responsive cis-acting elements on differentially expressed pre miRNAs. Despite the fact that some of the differentially expressed miRNAs have been already identified, this is to our knowledge the first report identifying miRNAs responsive to a biocompatible stress resistance inducer such as potassium phosphite, in plants. Further characterization of these miRNAs and their target genes might help to elucidate the molecular mechanisms underlying KPhi-induced resistance.


Subject(s)
MicroRNAs/genetics , Phosphites/metabolism , Potassium Compounds/metabolism , Solanum tuberosum/genetics , Argentina , Gene Expression Regulation, Plant/drug effects , High-Throughput Nucleotide Sequencing , Phosphites/pharmacology , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Messenger/genetics , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...