Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Immunobiology ; 228(2): 152335, 2023 03.
Article in English | MEDLINE | ID: mdl-36689825

ABSTRACT

Dopamine is a key neurotransmitter that links the nervous and the immune system. Bisphenol A (BPA) is an endocrine disruptor with a wide distribution in the environment that is used in the manufacturing of plastic products. Evidence shows that BPA can interfere with the central dopaminergic transmission; however, there are no previous reports of this effect outside the central nervous system. Thus, the aim of this work was to investigate the in vitro mechanisms of action involved in the response to dopamine in both human keratinocyte and macrophage cell lines chronically exposed to BPA. Dopamine modulates cytokine secretion and NF-κB expression in BPA-treated HaCaT keratinocytes, without modifying these parameters in BPA-treated THP-1 macrophages. In addition, dopamine increases MMP activity in both BPA-treated cell lines, although it decreases keratinocytes migration. We suggest the immunomodulatory effect of dopamine might be different in keratinocytes and macrophages under chronical BPA exposure conditions. These findings revealed for the first time the in vitro immunomodulatory effect of dopamine in the presence of BPA at peripheral level.


Subject(s)
Dopamine , Macrophages , Humans , Dopamine/metabolism , Dopamine/pharmacology , Phenols/metabolism , Phenols/pharmacology , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/pharmacology , Keratinocytes/metabolism
2.
Toxicol Appl Pharmacol ; 461: 116383, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36682589

ABSTRACT

A deep interaction between the endometrium and the invading trophoblast occurs during implantation in humans, with the acquisition of uterine receptivity to the invading embryo promoted by an elevation of pro-inflammatory cytokines in the endometrium, and the invasiveness of decidualizing endometrial stromal cells, augmented by trophoblast-derived signals. Considering that usage of angiotensin II type 1 (AT1) receptor blockers, among other renin-angiotensin system (RAS) antagonists, is associated with adverse pregnancy outcomes, here we aim to analyse the involvement of AT1 receptor in the reciprocal dialogue occurring between endometrial stroma and trophoblast cells. In human endometrial stromal cells (T-HESC) pre-incubated with a decidualization cocktail, angiotensin (Ang) II increased protein expression of prolactin and FOXO1, markers of endometrial decidualization, while promoting nuclear translocation of FOXO1. In addition, Ang II treatment increased CXCL8, and matrix metalloprotease (MMP)-2 levels in T-HESC. Incubation with the AT1 receptor blocker losartan or with an NFAT signalling inhibitor, decreased Ang II-induced secretion of prolactin, CXCL8, and MMP-2 in T-HESC. In a wound healing assay, conditioned medium (CM) obtained from Ang II-treated T-HESC, but not CM from losartan-pre-incubated T-HESC, increased migration of HTR-8/SVneo trophoblasts, effect that was inhibited in the presence of a CXCL8-neutralizing antibody. An increased secretion of CXCL8 and MMP-2 was observed after treatment of T-HESC with CM obtained from HTR-8/SVneo cells, which was not observed in T-HESC pre-incubated with losartan or with the NFAT inhibitor. This study evidenced a reciprocal RAS-coded messaging between trophoblast and ESC which is affected by the AT1 receptor blocker losartan.


Subject(s)
Losartan , Trophoblasts , Pregnancy , Female , Humans , Trophoblasts/metabolism , Losartan/pharmacology , Angiotensin II/toxicity , Receptor, Angiotensin, Type 1/metabolism , Matrix Metalloproteinase 2/metabolism , Prolactin/metabolism , Endometrium/metabolism , Stromal Cells/metabolism
3.
Discov Oncol ; 13(1): 60, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35802257

ABSTRACT

Metabolic reprogramming (MR) influences progression of chronic myeloid leukaemia (CML) to blast crisis (BC), but metabolic programs may change transiently in a second dimension (metabolic plasticity, MP), driven by environments as hypoxia, affecting cytotoxic potency (CPot) of drugs targeting mitochondria or mitochondria-related cell stress responses (MRCSR) such as mitophagy and mitochondrial biogenesis. We assessed mitochondrial membrane potential (MMP), mitochondrial mass (MM), apoptosis, glucose uptake (GU), and CPot of arsenic trioxide (ATO), CCCP, valproic acid (VPA), vincristine (VCR), Mdivi1, and dichloroacetic acid (DCA) in CML BC cells K562 (BC-K562) under hypoxia through flow cytometry, and gene expression from GEO database. About 60% of untreated cells were killed after 72 h under hypoxia, but paradoxically, all drugs but ATO rescued cells and increased survival rates to almost 90%. Blocking mitophagy either with VCR or Mdivi1, or increasing mitochondrial biogenesis with VPA enhanced cell-survival with increased MM. DCA increased MM and rescued cells in spite of its role in activating pyruvate dehydrogenase and Krebs cycle. Cells rescued by DCA, VPA and CCCP showed decreased GU. ATO showed equal CPot in hypoxia and normoxia. MP was evidenced by differential expression of genes (DEG) under hypoxia related to Krebs cycle, lipid synthesis, cholesterol homeostasis, mitophagy, and mitochondrial biogenesis (GSE144527). A 25-gene MP-signature of BC-K562 cells under hypoxia identified BC cases among 113 transcriptomes from CML patients (GSE4170). We concluded that hypoxic environment drove a MP change evidenced by DEG that was reflected in a paradoxical pro-survival, instead of cytotoxic, effect of drugs targeting mitochondria and MRCSR.

4.
J Ethnopharmacol ; 247: 112282, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31604138

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Extracts of Smilax campestris Griseb (Smilacaceae) have been employed in the treatment of several inflammatory diseases as a traditional herbal medicine. However, the cellular and molecular mechanisms involved in the observed effects remain elusive. Macrophages are known to play a central role in inflammatory responses. These cells are activated in response to a diversity of danger signals and produce several mediators of inflammation that eventually regulate the immune response. For all the above mentioned, scientific evidence is required to support the popular use of S. campestris. AIM OF THE STUDY: We aimed to investigate the anti-inflammatory effect of S. campestris aqueous extract (SME) in activated THP-1 human macrophages, on the production of some mediators of inflammation and oxidative stress in order to provide scientific support for its popular use. MATERIALS AND METHODS: The characterization of SME was assessed by HPLC-MS/MS. The production of the pro-inflammatory cytokines and chemokines was evaluated by ELISA. The activity of metalloproteases was evaluated by zymography. The subcellular localization of the NF-κB transcription factor was analysed by Western blot. The superoxide anion and glutathione levels were assessed by flow cytometry. The cytotoxicity induced by SME in THP-1 macrophages was also investigated by the LDH release test. RESULTS: In the present study, we have identified catechin and glycosylated derivatives of quercetin (quercetin-3-O-glucoside, quercetin-3-O-galactoside, rutin and quercetin-3-rhamnoside) as major components of the aqueous SME. We found that SME significantly decreased the production of the pro-inflammatory cytokines tumour necrosis factor (TNF)- α, interleukin (IL)-1ß, IL-6, IL-8 and monocyte chemoattractant protein (MCP)-1 and the activity of the metalloproteinase (MMP)-9, in lipopolysaccharide-activated macrophages derived from the monocytic cell line THP-1. Furthermore, SME diminished the expression of NF-κB p65 subunit in the nuclear fraction. In addition, SME decreased the production of superoxide anion in THP-1 macrophages, without altering the levels of reduced glutathione. CONCLUSION: These results suggest that SME exerts its anti-inflammatory effects in human activated macrophages by inhibiting the production of pro-inflammatory cytokines, matrix metalloproteinases and the NF-κB transcription factor pathway along with a reduction of oxidative stress mediators. Moreover, catechin and glycosylated derivatives of were identified by HPLC-MS/MS in SME. Our findings provide scientific support for the traditional use of the S. campestris extracts.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Macrophages/drug effects , Plant Extracts/pharmacology , Smilax/chemistry , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/isolation & purification , Argentina , Cell Line , Cytokines/immunology , Cytokines/metabolism , Ethnopharmacology , Flavonoids/analysis , Flavonoids/isolation & purification , Glutathione/metabolism , Humans , Lipopolysaccharides/immunology , Macrophages/immunology , Medicine, Traditional/methods , Oxidative Stress/drug effects , Plant Extracts/analysis , Plant Extracts/isolation & purification , Superoxides/metabolism , Toxicity Tests , Water/chemistry
5.
Life Sci ; 79(4): 342-50, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16516242

ABSTRACT

Gamma-aminobutyric acid (GABA) participates in neuroendocrine regulation. Since steroid hormones have been shown to modulate the GABAergic system, here we evaluated the effect of chronic in vivo estradiol administration on GABA B receptor (GABA(B)R) expression. GABA(B1) and GABA(B2) subunits were analyzed by Western Blot and RT-PCR, in hypothalami and anterior pituitaries of adult female rats: a) treated for 1 week with estradiol-valerate (a single dose of 100 mug /kg: E1), b) implanted with a 10 mg pellet of estradiol-benzoate for 5 weeks (E5) or c) on proestrous (P), d) ovariectomized (OVX). Pituitary GABA(B)R levels were correlated to a biological effect: baclofen, a GABA(B)R agonist, action on intracellular calcium titers ([Ca(2+)](i)) in pituitary cells. E5 pituitaries showed a significant decrease in the expression of GABA(B1) and GABA(B2) mRNAs compared to P. The GABA(B1a) splice variant of GABA(B1) was always more abundant than GABA(B1b) in this tissue. Similar to the pituitary, hypothalamic GABA(B1) and GABA(B2) mRNAs decreased in E5; this was confirmed at the protein level. In the hypothalamus GABA(B1b) was the main variant expressed in P rats, and was the one significantly sensitive to estradiol-induced decrease, as determined by Western Blots. Castration did not modify GABA(B)R expression with regards to P in either tissue. In P pituitary cells baclofen induced a decrease in [Ca(2+)](i), in contrast this effect was lost in E5 cells. We conclude that chronic estradiol treatment negatively regulates the expression of the GABA(B)R subunits in the pituitary and the hypothalamus. This effect is coupled to a loss of baclofen action on intracellular calcium in pituitary cells.


Subject(s)
Estradiol/pharmacology , Gene Expression/drug effects , Hypothalamus/drug effects , Pituitary Gland, Anterior/drug effects , Receptors, GABA-B/metabolism , Animals , Baclofen/pharmacology , Blotting, Western , Calcium Channels/drug effects , Calcium Channels/metabolism , Down-Regulation/drug effects , Female , GABA Agonists/pharmacology , Hypothalamus/metabolism , Ovariectomy , Pituitary Gland, Anterior/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, GABA-B/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL