Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biol Sex Differ ; 9(1): 13, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29609661

ABSTRACT

BACKGROUND: Sexual parasites offer unique insights into the reproduction of unisexual and sexual populations. Because unisexuality is almost exclusively linked to the female sex, most studies addressed host-parasite dynamics in populations where sperm-dependent females dominate. Pelophylax water frogs from Central Europe include hybrids of both sexes, collectively named P. esculentus. They live syntopically with their parental species P. lessonae and/or P. ridibundus. Some hybrid lineages consist of all males providing a chance to understand the origin and perpetuation of a host-parasite (egg-dependent) system compared to sperm-dependent parthenogenesis. METHODS: We focused on P. ridibundus-P. esculentus populations where P. ridibundus of both sexes lives together with only diploid P. esculentus males. Based on 17 microsatellite markers and six allozyme loci, we analyzed (i) the variability of individual genomes, (ii) the reproductive mode(s) of all-male hybrids, and (iii) the genealogical relationships between the hybrid and parental genomes. RESULTS: Our microsatellite data revealed that P. esculentus males bear Mendelian-inherited ridibundus genomes while the lessonae genome represents a single clone. Our data indicate that this clone did not recently originate from adjacent P. lessonae populations, suggesting an older in situ or ex situ origin. CONCLUSIONS: Our results confirm that also males can perpetuate over many generations as the unisexual lineage and successfully compete with P. ridibundus males for eggs provided by P. ridibundus females. Natural persistence of such sex-specific hybrid populations allows to studying the similarities and differences between male and female reproductive parasitism in many biological settings.


Subject(s)
Ranidae/genetics , Animals , Genotype , Hybridization, Genetic , Male , Microsatellite Repeats , Reptilian Proteins/genetics
2.
Mol Ecol ; 24(17): 4371-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26308154

ABSTRACT

Polyploidization is a rare yet sometimes successful way for animals to rapidly create geno- and phenotypes that may colonize new habitats and quickly adapt to environmental changes. In this study, we use water frogs of the Pelophylax esculentus complex, comprising two species (Pelophylax lessonae, genotype LL; Pelophylax ridibundus, RR) and various diploid (LR) and triploid (LLR, LRR) hybrid forms, summarized as P. esculentus, as a model for studying recent hybridization and polyploidization in the context of speciation. Specifically, we compared the geographic distribution and genetic diversity of diploid and triploid hybrids across Europe to understand their origin, maintenance and potential role in hybrid speciation. We found that different hybrid and parental genotypes are not evenly distributed across Europe. Rather, their genetic diversity is structured by latitude and longitude and the presence/absence of parental species but not of triploids. Highest genetic diversity was observed in central and eastern Europe, the lowest in the northwestern parts of Europe. This gradient can be explained by the decrease in genetic diversity during postglacial expansion from southeastern glacial refuge areas. Genealogical relationships calculated on the basis of microsatellite data clearly indicate that hybrids are of multiple origin and include a huge variety of parental genomes. Water frogs in mixed-ploidy populations without any parental species (i.e. all-hybrid populations) can be viewed as evolutionary units that may be on their way towards hybrid speciation. Maintenance of such all-hybrid populations requires a continuous exchange of genomes between diploids and triploids, but scenarios for alternative evolutionary trajectories are discussed.


Subject(s)
Genetic Variation , Hybridization, Genetic , Polyploidy , Ranidae/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Diploidy , Europe , Evolution, Molecular , Genetic Speciation , Genetics, Population , Genotype , Geography , Microsatellite Repeats , Molecular Sequence Data
3.
BMC Evol Biol ; 15: 131, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26141702

ABSTRACT

BACKGROUND: Hybridization between two species usually leads to inviable or infertile offspring, due to endogenous or exogenous selection pressures. Yet, hybrid taxa are found in several plant and animal genera, and some of these hybrid taxa are ecologically and evolutionarily very successful. One example of such a successful hybrid is the water frog, Pelophylax esculentus which originated from matings between the two species P. ridibundus (genotype RR) and P. lessonae (LL). At the northern border of the distribution all-hybrid populations consisting of diploid (LR) and one or two triploid (LLR, LRR) frog types have been established. Here, the hybrid has achieved reproductive independence from its sexual ancestors and forms a self-sustaining evolutionary unit. Based on the gamete production of these hybrids, certain mating combinations should lead to LL and RR offspring, but these parental forms are absent among the adults. RESULTS: In order to investigate the mechanisms that maintain such an all-hybrid system, we performed a field study and a crossing experiment. In the field we sampled several ponds for water frog larvae at different developmental stages. Genotype compositions were then analysed and life-history differences between the genotypes examined. In the experiment we crossed diploid and triploid males and females from different ponds and determined fertilization success as well as development speed and survival rates of the offspring under high, medium and low food availability. In both parts of the study, we found numerous LL and RR offspring during the egg and early larval stages; but the frequency of these parental genotypes decreased drastically during later stages. In natural ponds almost all of them had disappeared already before metamorphosis; under the more benign experimental conditions the last ones died as juveniles during the following year. CONCLUSIONS: From the combined results we conclude that the absence of parental genotypes in all-hybrid populations is due to post-zygotic selection against them, rather than to pre-zygotic mechanisms that might prevent their formation in the first place. For this post-zygotic selection, genetic mechanisms resulting from low genetic diversity and fixation of deleterious mutations seem to be a more likely explanation than ecological factors.


Subject(s)
Rana esculenta/growth & development , Rana esculenta/genetics , Animals , Female , Flow Cytometry , Genetic Variation , Hybridization, Genetic , Male , Metamorphosis, Biological , Microsatellite Repeats , Ploidies , Ranidae/genetics , Ranidae/growth & development , Reproduction
4.
BMC Ecol ; 13: 47, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24304922

ABSTRACT

BACKGROUND: In anurans, differences in male mating calls have intensively been studied with respect to taxonomic classification, phylogeographic comparisons among different populations and sexual selection. Although overall successful, there is often much unexplained variation in these studies. Potential causes for such variation include differences among genotypes and breeding systems, as well as differences between populations. We investigated how these three factors affect call properties in male water frogs of Pelophylax lessonae (genotype LL), P. ridibundus (RR) and their interspecific hybrid P. esculentus which comes in diploid (LR) and triploid types (LLR, LRR). RESULTS: We investigated five call parameters that all showed a genomic dosage effect, i.e. they either decreased or increased with the L/R ratio in the order LL-LLR-LR-LRR-RR. Not all parameters differentiated equally well between the five genotypes, but combined they provided a good separation. Two of the five call parameters were also affected by the breeding system. Calls of diploid LR males varied, depending on whether these males mated with one or both of the parental species (diploid systems) or triploid hybrids (mixed ploidy systems). With the exception of the northernmost mixed-ploidy population, call differences were not related to the geographic location of the population and they were not correlated with genetic distances in the R and L genomes. CONCLUSIONS: We found an influence of all three tested factors on call parameters, with the effect size decreasing from genotype through breeding system to geographic location of the population. Overall, results were in line with predictions from a dosage effect in L/R ratios, but in three call parameters all three hybrid types were more similar to one or the other parental species. Also calls of diploid hybrids varied between breeding systems in agreement with the sexual host required for successful reproduction. The lack of hybrid call differences in a mixed-ploidy population at the northern edge of the water frog distribution is likely to be associated with genetic particularities, including a) low genetic variability and/or b) a local loss of genes coding for genotype-dependent call differentiation under conditions where female discrimination between diploid and triploid males is not beneficial.


Subject(s)
Gene Dosage , Hybridization, Genetic , Rana esculenta/genetics , Vocalization, Animal , Animals , Diploidy , Female , Genetics, Population , Genotype , Male , Rana esculenta/physiology , Reproduction/physiology , Triploidy
5.
Ecol Evol ; 3(9): 2933-46, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24101984

ABSTRACT

The European water frog Pelophylax esculentus is a natural hybrid between P. lessonae (genotype LL) and P. ridibundus (RR). It reproduces through hybridogenesis, eliminating one parental genome from its germline and producing gametes containing the genome of the other parental species. According to previous studies, this elimination and transmission pattern is very diverse. In mixed populations, where only diploid hybrids (LR) live in sympatry and mate with one or both parental species, the excluded genome varies among regions, and the remaining genome is transmitted clonally to haploid gametes. In all-hybrid populations consisting of diploid (LR) and triploid (LLR and/or LRR) frogs, diploid individuals also produce gametes clonally (1n in males, 2n in females), whereas triploids eliminate the genome they have in single copy and produce haploid gametes containing the recombined other genome. However, here, too, regional differences seem to exist, and some triploids have been reported to produce diploid gametes. In order to systematically study such regional and genotype differences in gamete production, their potential origin, and their consequences for the breeding system, we sampled frogs from five populations in three European countries, performed crossing experiments, and investigated the genetic variation through microsatellite analysis. For four populations, one in Poland, two in Germany, and one in Slovakia, our results confirmed the elimination and transmission pattern described above. In one Slovakian population, however, we found a totally different pattern. Here, triploid males (LLR) produce sperm with a clonally transmitted diploid LL genome, rather than a haploid recombined L genome, and LR females clonally produce haploid R eggs, rather than diploid LR eggs. These differences among the populations in gamete production go along with differences in genomotype composition, breeding system (i.e., the way triploids are produced), and genetic variation. These differences are strong evidence for a polyphyletic origin of triploids. Moreover, our findings shed light on the evolutionary potential inherent to the P. esculentus complex, where rare events due to untypical gametogenetic processes can lead to the raise, the perpetuation, and the dispersion of new evolutionary significant lineages which may also deserve special conservation measures.

6.
Vet J ; 197(2): 238-44, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23535222

ABSTRACT

Several edible frogs (Pelophylax kl. esculentus) collected into a single group from various ponds in Europe died suddenly with reddening of the skin (legs, abdomen) and haemorrhages in the gastrointestinal tract. Ranavirus was detected in some of the dead frogs using PCR, and virus was also isolated in cell culture. Over the following 3 years, another two outbreaks occurred with low to high mortality in between asymptomatic periods. In the first 2 years, the same ranavirus was detected repeatedly, but a new ranavirus was isolated in association with the second mass-mortality event. The two different ranaviruses were characterized based on nucleotide sequences from four genomic regions, namely, major capsid protein, DNA polymerase, ribonucleoside diphosphate reductase alpha and beta subunit genes. The sequences showed slight variations to each other or GenBank entries and both clustered to the Rana esculenta virus (REV-like) clade in the phylogenetic analysis. Furthermore, a quiescent infection was demonstrated in two individuals. By comparing samples taken before and after transport and caging in groups it was possible to identify the pond of origin and a ranavirus was detected for the first time in wild amphibians in Germany.


Subject(s)
DNA Virus Infections/veterinary , Ranavirus/genetics , Ranavirus/isolation & purification , Ranidae/virology , Animals , DNA Virus Infections/virology , Phylogeny , Ranavirus/classification
7.
BMC Ecol ; 10: 14, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20507575

ABSTRACT

UNLABELLED: The role of differential selection in determining the geographic distribution of genotypes in hybrid systems has long been discussed, but not settled. The present study aims to asses the importance of selection in structuring all-hybrid Pelophylax esculentus populations. These populations, in which the parental species (P. lessonae with genotype LL and P. ridibundus with genotype RR) are absent, have pond-specific proportions of diploid (LR) and triploid (LLR and LRR) genotypes. RESULTS: With data from 12 Swedish ponds, we first show that in spite of significant changes in genotype proportions over time, the most extreme ponds retained their differences over a six year study period. The uneven distribution of genotypes among ponds could be a consequence of differential selection varying among ponds (selection hypothesis), or, alternatively, of different gamete production patterns among ponds (gamete pattern hypothesis). The selection hypothesis was tested in adults by a six year mark-recapture study in all 12 ponds. As the relative survival and proportion of LLR, LR and LRR did not correlate within ponds, this study provided no evidence for the selection hypothesis in adults. Then, both hypotheses were tested simultaneously in juvenile stages (eggs, tadpoles, metamorphs and one year old froglets) in three of the ponds. A gradual approach to adult genotype proportions through successive stages would support the selection hypotheses, whereas the presence of adult genotype proportions already at the egg stage would support the gamete pattern hypothesis. The result was a weak preference for the gamete pattern hypothesis. CONCLUSIONS: These results thus suggest that selection is of little importance for shaping genotype distributions of all-hybrid populations of P. esculentus, but further studies are needed for confirmation. Moreover, the study provided valuable data on genotype-specific body lengths, adult survival and sex ratios.


Subject(s)
Diploidy , Genetics, Population , Polyploidy , Rana esculenta/genetics , Animals , Body Size , Female , Genotype , Geography , Larva , Linear Models , Male , Microsatellite Repeats , Models, Genetic , Ovum , Selection, Genetic , Sweden
8.
Mol Ecol ; 19(9): 1814-28, 2010 May.
Article in English | MEDLINE | ID: mdl-20374490

ABSTRACT

Pelophylax esculentus is a hybridogenetic frog originating from matings between P. ridibundus (RR) and P. lessonae (LL). Typically, diploid hybrids (LR) live in sympatry with one of their parental species, upon which they depend for successful reproduction. In parts of their range, however, pure hybrid populations can be found. These hybrid populations have achieved reproductive independence from their parental species by using triploid hybrids (LLR, LRR) rather than LL and RR as their sexual hosts. These different breeding systems also entail differences in reproduction (clonal versus sexual) and hence offer the opportunity to study how genetic diversity is affected by reproductive mode, population structure and geographic location. We investigated 33 populations in the Scania region (South Sweden) and 18 additional populations from Northern and Central Europe. Within both genomes (L, R), genetic variability increases with the potential for recombination and declines from the main species distribution area southeast of the Baltic Sea to the fringe populations northwest of the Baltic Sea. Within the main study area in Scania, genetic diversity is low and decreases from a core area to the periphery. Genetic differentiation between Scania populations is small but significant and best explained by 'isolation by distance'. Despite the low genetic variability within the discrete genomes, all-hybrid P. esculentus populations in southern Sweden are apparently not suffering from direct negative fitness effects. This is probably because of its somatic hybrid status, which increases diversity through the combination of genomes from two species.


Subject(s)
Genetic Variation , Genetics, Population , Hybridization, Genetic , Ranidae/genetics , Animals , Female , Genomics , Genotype , Geography , Male , Microsatellite Repeats , Reproduction/genetics , Sequence Analysis, DNA , Sex Ratio , Sweden
9.
Evolution ; 63(7): 1754-68, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19245393

ABSTRACT

Speciation via interspecific hybrids is very rare in animals, as compared to plants. Whereas most plants overcome the problem of meiosis between different chromosome sets by tetraploidization, animal hybrids often escape hybrid sterility by clonal reproduction. This comes at the expense of genetic diversity and the ability to purge deleterious mutations. However, here we show that all-hybrid populations of diploid (LR) and triploid (LLR and LRR) water frogs (Pelophylax esculentus) have secondarily acquired sexual reproduction. First, in a crossing experiment analyzed with microsatellite markers, triploid hybrids of both sexes and genotypes (LLR and LRR) recombined their homospecific genomes. Second, the great majority of natural populations investigated had low multilocus linkage disequilibrium, indicating a high recombination rate. As predicted from mating system models, the L genome had constant, low levels of linkage disequilibrium, whereas linkage disequilibrium in the R genome showed a significant reduction with increasing proportion of recombining triploids. This direct evidence of sexual reproduction in P. esculentus calls for a change of the conventional view of hybridogens as clonally reproducing diploids. Rather, hybridogens can be independent sexually reproducing units with an evolutionary potential.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Ranidae/genetics , Sexual Behavior, Animal , Animals , Female , Genome , Genotype , Linkage Disequilibrium , Male , Polyploidy , Ranidae/physiology , Recombination, Genetic , Reproduction, Asexual
10.
Trends Ecol Evol ; 23(6): 289-92, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18440091

ABSTRACT

The evolutionary importance of interspecific hybridisation has been a controversial issue for quite some time. Some view mating between different species as a maladaptive process; others stress the adaptive value of choosing heterospecific mates under ecological conditions that favour hybrids. A recent paper by Pfennig is the first study to make a priori predictions of how adaptive choice between con- and heterospecific partners should vary with ecological conditions, and then testing these predictions experimentally.


Subject(s)
Bufonidae/genetics , Hybridization, Genetic , Reproduction , Sexual Behavior, Animal/physiology , Adaptation, Physiological , Animals , Biological Evolution , Bufonidae/physiology , Female , Male , Models, Biological
11.
BMC Evol Biol ; 7: 80, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17517124

ABSTRACT

BACKGROUND: Female only unisexual vertebrates that reproduce by hybridogenesis show an unusual genetic composition. They are of hybrid origin but show no recombination between the genomes of their parental species. Instead, the paternal genome is discarded from the germline prior to meiosis, and gametes (eggs only) contain solely unrecombined maternal genomes. Hence hybridogens only transmit maternally inherited mutations. Hybridity is restored each generation by backcrossing with males of the sexual parental species whose genome was eliminated. In contrast, recombining sexual species propagate an intermixed pool of mutations derived from the maternal and paternal parts of the genome. If mutation rates are lower in female gametes than males, it raises the possibility for lower mutation accumulation in a hybridogenetic population, and consequently, higher population fitness than its sexual counterpart. RESULTS: We show through Monte-Carlo simulations that at higher male to female mutation ratios, and sufficiently large population sizes, hybridogenetic populations can carry a lower mutation load than sexual species. This effect is more pronounced with synergistic forms of epistasis. Mutations accumulate faster on the sexual part of the genome, and with the purifying effects of epistasis, it makes it more difficult for mutations to be transmitted on the clonal part of the genome. In smaller populations, the same mechanism reduces the speed of Muller's Ratchet and the number of fixed mutations compared to similar asexual species. CONCLUSION: Since mutation accumulation can be less pronounced in hybridogenetic populations, the question arises why hybridogenetic organisms are so scarce compared to sexual species. In considering this, it is likely that comparison of population fitnesses is not sufficient. Despite competition with the sexual parental species, hybrid populations are dependent on the maintenance of--and contact with--their sexual counterpart. Other problems may involve too little genetic diversity to respond to changing environments and problems in becoming hybridogenetic (e.g. disruption of meiosis and subsequent infertility or sterility). Yet, lower mutation accumulation in hybridogenetic populations opens the possibility that hybridogenetic species can develop into new sexual species once recombination is re-established and reproductive isolation from sexual ancestors has occurred.


Subject(s)
Hybridization, Genetic , Models, Genetic , Mutation , Reproduction, Asexual/genetics , Reproduction/genetics , Animals , Biological Evolution , Female , Male , Monte Carlo Method , Population Density , Selection, Genetic
12.
Oecologia ; 152(3): 415-24, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17333285

ABSTRACT

Life history theory is concerned with the costs of survival, growth and reproduction under different ecological conditions and the allocation of resources to meet these costs. Typical approaches used to address these topics include manipulation of food resources, followed by measures of subsequent reproductive traits, and measures of the relationship between current and future reproductive investment. Rarely, however, do studies test for the interaction of past investment, present resource availability and future investment simultaneously. Here, we investigate this interaction in females of a sexual parasite-host system consisting of the hybridogenetic frog Rana esculenta (E) and one of its parental species Rana lessonae (L). We kept females from each of two groups (with or without previous reproduction) under two food treatments (low or high) and regularly recorded their growth as well as their body condition and hormone titres as measures of future reproductive condition. After keeping them in hibernation until the following spring, we exposed the females to males, recorded whether they spawned or not and related this response to their condition in the previous autumn. Past reproduction negatively affected growth during summer and condition during autumn which, in turn, reduced the following year's reproductive output. These costs of previous reproduction were less pronounced under the high than under the low food treatment and lower in R. lessonae than in R. esculenta. Increasing food supply improved reproductive condition more in L than in E females. These species differences in reproductive costs and food requirements provide a mechanistic explanation for why E females skip annual reproduction almost twice as often as L females. Since R. esculenta is a sexual parasite that depends on R. lessonae for successful reproduction, these species-specific life history patterns not only affect individual fitness but also the spatial structure and temporal dynamics of mixed LE populations.


Subject(s)
Rana esculenta/physiology , Ranidae/parasitology , Animals , Feeding Behavior , Female , Host-Parasite Interactions , Male , Population Dynamics , Rana esculenta/growth & development , Ranidae/growth & development , Ranidae/physiology , Reproduction , Seasons
13.
Evolution ; 57(4): 872-82, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12778556

ABSTRACT

Strategies for optimal metamorphosis are key adaptations in organisms with complex life cycles, and the components of the larval growth environment causing variation in this trait are well studied empirically and theoretically. However, when relating these findings to a broader evolutionary or ecological context, usually the following assumptions are made: (1) size at metamorphosis positively relates to future fitness, and (2) the larval growth environment affects fitness mainly through its effect on timing of and size at metamorphosis. These assumptions remain poorly tested, because data on postmetamorphic fitness components are still rare. We created variation in timing of and size at metamorphosis by manipulating larval competition, nonlethal presence of predators, pond drying, and onset of larval development, and measured the consequences for subsequent terrestrial survival and growth in 1564 individually marked water frogs (Rana lessonae and R. esculenta), raised in enclosures in their natural environment. Individuals metamorphosing at a large size had an increased chance of survival during the following terrestrial stage (mean linear selection gradient: 0.09), grew faster and were larger at maturity than individuals metamorphosing at smaller sizes. Late metamorphosing individuals had a lower survival rate (mean linear selection gradient: -0.03) and grew more slowly than early metamorphosing ones. We found these patterns to be consistent over the three years of the study and the two species, and the results did not depend on the nature of the larval growth manipulation. Furthermore, individuals did not compensate for a small size at metamorphosis by enhancing their postmetamorphic growth. Thus, we found simple relationships between larval growth and postmetamorphic fitness components, and support for this frequently made assumption. Our results suggest postmetamorphic selection for fast larval growth and provide a quantitative estimate for the water frog example.


Subject(s)
Body Constitution/physiology , Metamorphosis, Biological/physiology , Models, Biological , Ranidae/physiology , Selection, Genetic , Animals , Larva/growth & development , Larva/physiology , Longevity , Switzerland
14.
Am Nat ; 156(1): 34-46, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10824019

ABSTRACT

In central Europe, the hybridogenetic waterfrog Rana esculenta, a hybrid between Rana ridibunda and Rana lessonae, lives in sympatry with one of its parental species, the poolfrog Rana lessonae. As R. esculenta has to backcross constantly with R. lessonae in order to produce viable offspring, this coexistence is obligatory for R. esculenta. Since R. esculenta has a higher primary fitness than R. lessonae, a mechanism is required that prevents the hybrid from driving the parental species, and hence itself, to extinction. Here, we present an analytical model and a computer simulation that investigate whether assortative mating can operate as a such a control mechanism. Our results show that assortative mating is very effective in regulating coexistence in such a hybrid-host system. This is particularly true when choice is affected by the proportion of the two male types in the population. Furthermore, we could show that even if the species composition in a mixed hybrid-host population may be largely influenced by differences in life-history parameters, assortative mating still plays a very important role by stabilizing coexistence. Thus, mating behavior turns out to be more important for the populations dynamics of hybridogenetic waterfrog systems than previously assumed.

15.
Oecologia ; 120(4): 506-514, 1999 Sep.
Article in English | MEDLINE | ID: mdl-28308300

ABSTRACT

In this study, we investigated whether free-living insectivorous water pipits (Anthus spinoletta) choose prey according to biochemical quality as measured by protein, lipid, carbohydrate, energy and water contents and/or according to profitability as measured by density, size and catchability. Food preference - expressed in relation to availability - is estimated for 22 arthropod taxa (families and orders). Uni- and multivariate statistics detected no relationships between food preference and nutrient contents, but revealed that more larger prey items are fed to nestlings than smaller ones, both for all prey taken together and within individual taxa. Furthermore, slow-flying arthropods, which are easier to catch, were usually preferred over walking and fast-flying ones. Combined with results from previous studies on the effects of vegetation, prey density and catchability on search times and energy intake, these findings suggest that water pipits select their prey primarily to maximize profitability, i.e. energy intake per unit time. Qualitative traits seem to be important only for specific taxa. For example, toxins or poor digestibility may be responsible for the avoidance of heteropterans, beetles and ants and for feeding the nestlings fewer tipulids than expected at high tipulid densities.

16.
Evolution ; 46(3): 665-676, 1992 Jun.
Article in English | MEDLINE | ID: mdl-28568669

ABSTRACT

The performance of three genotypes (LL, LR, RR) of tadpoles resulting from the hybrid mating system of Rana lessonae (phenotype L, genotype LL) and Rana esculenta (phenotype E, genotype LR) was determined in artificial ponds. The effects of interspecific competition and pond drying on growth, development, and survival of tadpoles were used to measure the performance of genotypes and the relative fitness of offspring. Among the three genotypes, tadpoles from the homogametic mating RR had the lowest survival, growth, and development under all environmental conditions. Body size of the LL and LR genotype tadpoles at metamorphosis was reduced by competition and pond drying. Days to metamorphosis were also higher for the LL and LR genotype tadpoles in competition ponds. The proportion of individuals metamorphosing of each genotype was differentially lowered by competition and pond drying. The LL genotype produced more metamorphs than the LR genotype in the constant water level ponds, but the LR genotype produced more in drying ponds. In competition ponds, the LR genotype produced more metamorphs than the LL genotype, but the LL genotype produced more metamorphs in ponds without competition. The RR genotype produced no metamorphs in any of the experimental environments. Increased performance of LR offspring from the heterogametic mating, in harsh conditions, and reduced performance of RR offspring from the homogametic mating, even under favorable conditions, relative to the parental genotype (LL) suggests that the population dynamics of this hybridogenetic system is strongly dependent on mate choice in mixed populations and the subsequent pond environment females select for oviposition and larval development.

SELECTION OF CITATIONS
SEARCH DETAIL
...