Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 10(16): e019862, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34387094

ABSTRACT

Background Thoracic aortic aneurysms (TAAs) occur because of abnormal remodeling of aortic extracellular matrix and are accompanied by the emergence of proteolytically active myofibroblasts. The microRNA miR-133a regulates cellular phenotypes and is reduced in clinical TAA specimens. This study tested the hypothesis that miR-133a modulates aortic fibroblast phenotype, and overexpression by lentivirus attenuates the development of TAA in a murine model. Methods and Results TAA was induced in mice. Copy number of miR-133a was reduced in TAA tissue and linear regression analysis confirmed an inverse correlation between aortic diameter and miR-133a. Analyses of phenotypic markers revealed an mRNA expression profile consistent with myofibroblasts in TAA tissue. Fibroblasts were isolated from the thoracic aortae of mice with/without TAA. When compared with controls, miR-133a was reduced, migration was increased, adhesion was reduced, and the ability to contract a collagen disk was increased. Overexpression/knockdown of miR-133a controlled these phenotypes. After TAA induction in mice, a single tail-vein injection of either miR-133a overexpression or scrambled sequence (control) lentivirus was performed. Overexpression of miR-133a attenuated TAA development. The pro-protein convertase furin was confirmed to be a target of miR-133a by luciferase reporter assay. Furin was elevated in this murine model of TAA and repressed by miR-133a replacement in vivo resulting in reduced proteolytic activation. Conclusions miR-133a regulates aortic fibroblast phenotype and over-expression prevented the development of TAA in a murine model. These findings suggest that stable alterations in aortic fibroblasts are associated with development of TAA and regulation by miR-133a may lead to a novel therapeutic strategy.


Subject(s)
Aorta, Thoracic/metabolism , Aortic Aneurysm, Thoracic/prevention & control , Fibroblasts/metabolism , Genetic Therapy , MicroRNAs/genetics , Vascular Remodeling , Animals , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/chemically induced , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Calcium Chloride , Cell Adhesion , Cell Movement , Cells, Cultured , Dilatation, Pathologic , Disease Models, Animal , Fibroblasts/pathology , Furin/genetics , Furin/metabolism , Genetic Vectors , Lentivirus/genetics , Mice, Inbred C57BL , MicroRNAs/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...