Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 22(4): 543-551.e4, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28943328

ABSTRACT

Humans do not usually develop effective immunity to Staphylococcus aureus reinfection. Using a murine model that mimics human infection, we show that lack of protective immunity to S. aureus systemic reinfection is associated with robust interleukin-10 (IL-10) production and impaired protective Th17 responses. In dendritic cell co-culture assays, priming with S. aureus promotes robust T cell proliferation, but limits Th cells polarization and production of IL-1ß and other cytokines important for Th1 and Th17 differentiation. We show that O-acetylation of peptidoglycan, a mechanism utilized by S. aureus to block bacterial cell wall breakdown, limits the induction of pro-inflammatory signals required for optimal Th17 polarization. IL-10 deficiency in mice restores protective immunity to S. aureus infection, and adjuvancy with a staphylococcal peptidoglycan O-acetyltransferase mutant reduces IL-10, increases IL-1ß, and promotes development of IL-17-dependent, Th cell-transferable protective immunity. Overall, our study suggests a mechanism whereby S. aureus modulates cytokines critical for induction of protective Th17 immunity.


Subject(s)
Acetyltransferases/immunology , Peptidoglycan/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Th17 Cells/immunology , Acetylation , Acetyltransferases/metabolism , Adaptive Immunity , Animals , Coculture Techniques , Dendritic Cells/immunology , Female , Humans , Interleukin-10/immunology , Interleukin-1beta/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptidoglycan/metabolism
2.
Cell ; 166(3): 624-636, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27374331

ABSTRACT

Degradation of Gram-positive bacterial cell wall peptidoglycan in macrophage and dendritic cell phagosomes leads to activation of the NLRP3 inflammasome, a cytosolic complex that regulates processing and secretion of interleukin (IL)-1ß and IL-18. While many inflammatory responses to peptidoglycan are mediated by detection of its muramyl dipeptide component in the cytosol by NOD2, we report here that NLRP3 inflammasome activation is caused by release of N-acetylglucosamine that is detected in the cytosol by the glycolytic enzyme hexokinase. Inhibition of hexokinase by N-acetylglucosamine causes its dissociation from mitochondria outer membranes, and we found that this is sufficient to activate the NLRP3 inflammasome. In addition, we observed that glycolytic inhibitors and metabolic conditions affecting hexokinase function and localization induce inflammasome activation. While previous studies have demonstrated that signaling by pattern recognition receptors can regulate metabolic processes, this study shows that a metabolic enzyme can act as a pattern recognition receptor. PAPERCLIP.


Subject(s)
Hexokinase/metabolism , Inflammasomes/metabolism , Peptidoglycan/metabolism , Receptors, Immunologic/metabolism , Acetylation , Acetylglucosamine/metabolism , Animals , Bacillus anthracis/metabolism , Cell Wall/metabolism , Dendritic Cells/metabolism , Glycolysis , Humans , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Models, Biological , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism
3.
Science ; 336(6086): 1314-7, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22674328

ABSTRACT

The intestinal microflora, typically equated with bacteria, influences diseases such as obesity and inflammatory bowel disease. Here, we show that the mammalian gut contains a rich fungal community that interacts with the immune system through the innate immune receptor Dectin-1. Mice lacking Dectin-1 exhibited increased susceptibility to chemically induced colitis, which was the result of altered responses to indigenous fungi. In humans, we identified a polymorphism in the gene for Dectin-1 (CLEC7A) that is strongly linked to a severe form of ulcerative colitis. Together, our findings reveal a eukaryotic fungal community in the gut (the "mycobiome") that coexists with bacteria and substantially expands the repertoire of organisms interacting with the intestinal immune system to influence health and disease.


Subject(s)
Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/microbiology , Fungi/immunology , Fungi/physiology , Intestinal Mucosa/microbiology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Animals , Antibodies, Fungal/blood , Candida tropicalis/immunology , Candida tropicalis/isolation & purification , Candida tropicalis/pathogenicity , Candida tropicalis/physiology , Colitis, Ulcerative/chemically induced , Colon/immunology , Colony Count, Microbial , Dextran Sulfate , Disease Susceptibility , Female , Fungi/classification , Fungi/isolation & purification , Haplotypes , Humans , Immunity, Innate , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestines/immunology , Intestines/microbiology , Lectins, C-Type/deficiency , Metagenome , Mice , Mice, Inbred C57BL , Polymorphism, Single Nucleotide
4.
J Immunol ; 187(11): 6002-10, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22031762

ABSTRACT

Signaling by innate immune receptors initiates and orchestrates the overall immune responses to infection. Macrophage receptors recognizing pathogens can be broadly grouped into surface receptors and receptors restricted to intracellular compartments, such as phagosomes and the cytoplasm. There is an expectation that ingestion and degradation of microorganisms by phagocytes contributes to activation of intracellular innate receptors, although direct demonstrations of this are rare, and many model ligands are studied in soluble form, outside of their microbial context. By comparing a wild-type strain of Staphylococcus aureus and a lysozyme-sensitive mutant, we have been able directly to address the role of degradation of live bacteria by mouse macrophages in determining the overall innate cellular inflammatory response. Our investigations revealed a biphasic response to S. aureus that consisted of an initial signal resulting from the engagement of surface TLR2, followed by a later, second wave on inflammatory gene induction. This second wave of inflammatory signaling was dependent on and correlated with the timing of bacterial degradation in phagosomes. We found that TLR2 signaling followed by TLR2/TLR9 signaling enhanced sensitivity to small numbers of bacteria. We further found that treating wild-type bacteria with the peptidoglycan synthesis-inhibiting antibiotic vancomycin made S. aureus more susceptible to degradation and resulted in increased inflammatory responses, similar to those observed for mutant degradation-sensitive bacteria.


Subject(s)
Macrophages/immunology , Phagocytosis/immunology , Phagosomes/immunology , Staphylococcal Infections/immunology , Toll-Like Receptors/immunology , Animals , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Ligands , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Knockout , Phagosomes/metabolism , Polymerase Chain Reaction , Signal Transduction/immunology , Staphylococcal Infections/metabolism , Staphylococcus aureus/immunology , Toll-Like Receptors/metabolism
5.
Nature ; 472(7344): 471-5, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21525931

ABSTRACT

Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects ß-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate ß-glucan polymers, Dectin-1 signalling is only activated by particulate ß-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.


Subject(s)
Immunity, Innate/immunology , Immunological Synapses/immunology , Membrane Proteins/immunology , Models, Immunological , Nerve Tissue Proteins/immunology , Phagocytosis/immunology , Animals , Cell Wall/chemistry , Cell Wall/immunology , Cells, Cultured , Humans , Lectins, C-Type , Leukocyte Common Antigens/deficiency , Leukocyte Common Antigens/metabolism , Macrophages/immunology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Reactive Oxygen Species/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/immunology , Signal Transduction/immunology , Solubility , beta-Glucans/chemistry , beta-Glucans/immunology
6.
Cell Host Microbe ; 7(1): 38-49, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20114027

ABSTRACT

IL-1beta produced by phagocytes is important for protection against the mucosal pathogen Staphylococcus aureus. Processing and maturation of this cytokine requires activation of the multiprotein inflammasome complex. We observed that the bacterial cell wall component peptidoglycan (PGN) must be particulate and internalized via phagocytosis to activate NLRP3 inflammasomes and IL-1beta secretion. In the context of S. aureus infection of macrophages, we find that phagocytosis and lysozyme-based bacterial cell wall degradation are necessary to induce IL-1beta secretion. Further, an S. aureus enzyme, PGN O-acetyltransferase A, previously demonstrated to make cell wall PGN resistant to lysozyme, strongly suppresses inflammasome activation and inflammation in vitro and in vivo. These observations demonstrate that phagocytosis and lysozyme-based cell wall degradation of S. aureus are functionally coupled to inflammasome activation and IL-1beta secretion and illustrate a case whereby a bacterium specifically subverts IL-1beta secretion through chemical modification of its cell wall PGN.


Subject(s)
Carrier Proteins/metabolism , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/microbiology , Muramidase/metabolism , Peptidoglycan/metabolism , Phagosomes/enzymology , Staphylococcus aureus/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Models, Biological , NLR Family, Pyrin Domain-Containing 3 Protein , Staphylococcus aureus/chemistry
7.
FASEB J ; 17(1): 56-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12424217

ABSTRACT

Severe necrotizing pancreatitis occurs in young female mice fed a choline-deficient and ethionine-supplemented (CDE) diet. Although the mechanism of the pancreatitis is unknown, one consequence of this diet is depletion of hepatic S-adenosylmethionine (SAM). SAM formation is catalyzed by methionine adenosyltransferases (MATs), which are encoded by liver-specific (MAT1A) and non-liver-specific (MAT2A) genes. In this work, we examined changes in pancreatic SAM homeostasis in mice receiving the CDE diet and the effect of SAM treatment. We found that both MAT forms are expressed in normal pancreas and pancreatic acini. After 48 h of the CDE diet, SAM levels decreased 50% and MAT1A-encoded protein disappeared via post-translational mechanisms, whereas MAT2A-encoded protein increased via pretranslational mechanisms. CDE-fed mice exhibited extensive necrosis, edema, and acute pancreatic inflammatory infiltration, which were prevented by SAM treatment. However, old female mice consuming the CDE diet that do not develop pancreatitis showed a similar fall in pancreatic SAM level. SAM was also protective in cerulein-induced pancreatitis in the rat, but the protection was limited. Although the pancreatic SAM level fell by more than 80% in the MAT1A knockout mice, no pancreatitis developed. This study thus provides several novel findings. First, the so-called liver-specific MAT1A is highly expressed in the normal pancreas and pancreatic acini. Second, the CDE diet causes dramatic changes in the expression of MAT isozymes by different mechanisms. Third, in contrast to the situation in the liver, where absence of MAT1A and decreased hepatic SAM level can lead to spontaneous tissue injury, in the pancreas the roles of SAM and MAT1A appear more complex and remain to be defined.


Subject(s)
Pancreatitis/etiology , S-Adenosylmethionine/physiology , Administration, Oral , Animals , Ceruletide , Choline Deficiency/complications , Ethionine/administration & dosage , Female , Methionine Adenosyltransferase/metabolism , Mice , Models, Biological , Pancreas/enzymology , Pancreas/pathology , Pancreatitis/pathology , Pancreatitis/prevention & control , S-Adenosylmethionine/administration & dosage
8.
Am J Physiol Gastrointest Liver Physiol ; 284(1): G85-95, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12488237

ABSTRACT

Treatments for pancreatitis are limited. Activation of transcription factor NF-kappaB, a key regulator of inflammatory molecule expression, is an early event in experimental pancreatitis and correlates with the inflammatory response. We report here that curcumin, a natural phytochemical known to inhibit NF-kappaB and activator protein (AP)-1, another important proinflammatory transcription factor, ameliorates pancreatitis in two rat models. In both cerulein pancreatitis and pancreatitis induced by a combination of ethanol diet and low-dose CCK, curcumin improved the severity of the disease as measured by a number of parameters (histology, serum amylase, pancreatic trypsin, and neutrophil infiltration). Curcumin markedly inhibited NF-kappaB and AP-1 activation, assessed by DNA binding and degradation of inhibitory IkappaB proteins, and the induction of mRNAs for cytokines IL-6 and TNF-alpha, the chemokine KC, and inducible nitric oxide synthase in pancreas. Curcumin also blocked CCK-induced NF-kappaB and AP-1 activation in isolated pancreatic acini. Our findings indicate that blocking key signals of the inflammatory response ameliorates pancreatitis in both ethanol and nonethanol models. They suggest that curcumin, which is currently in clinical trials for cancer prevention, may be useful for treatment of pancreatitis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Curcumin/pharmacology , Pancreatitis, Alcoholic/drug therapy , Animals , Caspase 3 , Caspases/metabolism , Central Nervous System Depressants , Ceruletide , Ethanol , I-kappa B Proteins/metabolism , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Pancreas/cytology , Pancreas/enzymology , Pancreatitis, Alcoholic/pathology , Rats , Rats, Sprague-Dawley , Sincalide/pharmacology , Transcription Factor AP-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...