Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 10(4)2023 04.
Article in English | MEDLINE | ID: mdl-36973011

ABSTRACT

Cocaine-induced changes in the expression of the glutamate-related scaffolding protein Homer2 influence this drug's psychostimulant and rewarding properties. In response to neuronal activity, Homer2 is phosphorylated on S117/S216 by calcium-calmodulin kinase IIα (CaMKIIα), which induces a rapid dissociation of mGlu5-Homer2 scaffolds. Herein, we examined the requirement for Homer2 phosphorylation in cocaine-induced changes in mGlu5-Homer2 coupling, to include behavioral sensitivity to cocaine. For this, mice with alanine point mutations at (S117/216)-Homer2 (Homer2AA/AA ) were generated, and we determined their affective, cognitive and sensorimotor phenotypes, as well as cocaine-induced changes in conditioned reward and motor hyperactivity. The Homer2AA/AA mutation prevented activity-dependent phosphorylation of S216 Homer2 in cortical neurons, but Homer2AA/AA mice did not differ from wild-type (WT) controls with respect to Morris maze performance, acoustic startle, spontaneous or cocaine-induced locomotion. Homer2AA/AA mice exhibited signs of hypoanxiety similar to the phenotype of transgenic mice with a deficit in signal-regulated mGluR5 phosphorylation (Grm5AA/AA ). However, opposite of Grm5AA/AA mice, Homer2AA/AA mice were less sensitive to the aversive properties of high-dose cocaine under both place-conditioning and taste-conditioning procedures. Acute injection with cocaine caused dissociation of mGluR5 and Homer2 in striatal lysates from WT, but not Homer2AA/AA mice, suggesting a molecular basis for the deficit in cocaine aversion. These findings indicate that CaMKIIα-dependent phosphorylation of Homer2 gates the negative motivational valence of high-dose cocaine via regulation of mGlu5 binding, furthering an important role for dynamic changes in mGlu5-Homer interactions in addiction vulnerability.


Subject(s)
Cocaine , Mice , Animals , Cocaine/pharmacology , Mice, Knockout , Phosphorylation , Mice, Transgenic , Conditioning, Psychological
2.
Front Behav Neurosci ; 11: 208, 2017.
Article in English | MEDLINE | ID: mdl-29163080

ABSTRACT

Immediate early and constitutively expressed products of the Homer1 gene regulate the functional assembly of post-synaptic density proteins at glutamatergic synapses to influence excitatory neurotransmission and synaptic plasticity. Earlier studies of Homer1 gene knock-out (KO) mice indicated active, but distinct, roles for IEG and constitutively expressed Homer1 gene products in regulating cognitive, emotional, motivational and sensorimotor processing, as well as behavioral and neurochemical sensitivity to cocaine. More recent characterization of transgenic mice engineered to prevent generation of the IEG form (a.k.a Homer1a KO) pose a critical role for Homer1a in cocaine-induced behavioral and neurochemical sensitization of relevance to drug addiction and related neuropsychiatric disorders. Here, we extend our characterization of the Homer1a KO mouse and report a modest pro-depressant phenotype, but no deleterious effects of the KO upon spatial learning/memory, prepulse inhibition, or cocaine-induced place-conditioning. As we reported previously, Homer1a KO mice did not develop cocaine-induced behavioral or neurochemical sensitization within the nucleus accumbens; however, virus-mediated Homer1a over-expression within the nucleus accumbens reversed the sensitization phenotype of KO mice. We also report several neurochemical abnormalities within the nucleus accumbens of Homer1a KO mice that include: elevated basal dopamine and reduced basal glutamate content, Group1 mGluR agonist-induced glutamate release and high K+-stimulated release of dopamine and glutamate within this region. Many of the neurochemical anomalies exhibited by Homer1a KO mice are recapitulated upon deletion of the entire Homer1 gene; however, Homer1 deletion did not affect NAC dopamine or alter K+-stimulated neurotransmitter release within this region. These data show that the selective deletion of Homer1a produces a behavioral and neurochemical phenotype that is distinguishable from that produced by deletion of the entire Homer1 gene. Moreover, the data indicate a specific role for Homer1a in regulating cocaine-induced behavioral and neurochemical sensitization of potential relevance to the psychotogenic properties of this drug.

3.
Cell ; 154(3): 637-50, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911326

ABSTRACT

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.


Subject(s)
Cocaine-Related Disorders/physiopathology , Cocaine/metabolism , Dopamine/metabolism , Peptidylprolyl Isomerase/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Embryo, Mammalian/metabolism , Homer Scaffolding Proteins , Long-Term Potentiation , Mice , Molecular Sequence Data , NIMA-Interacting Peptidylprolyl Isomerase , Phosphorylation , Receptors, AMPA/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
4.
J Neurosci ; 31(1): 314-21, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21209217

ABSTRACT

The neurobiological underpinnings of mood and anxiety disorders have been linked to the nucleus accumbens (NAc), a region important in processing the rewarding and emotional salience of stimuli. Using chronic social defeat stress, an animal model of mood and anxiety disorders, we investigated whether alterations in synaptic plasticity are responsible for the long-lasting behavioral symptoms induced by this form of stress. We hypothesized that chronic social defeat stress alters synaptic strength or connectivity of medium spiny neurons (MSNs) in the NAc to induce social avoidance. To test this, we analyzed the synaptic profile of MSNs via confocal imaging of Lucifer-yellow-filled cells, ultrastructural analysis of the postsynaptic density, and electrophysiological recordings of miniature EPSCs (mEPSCs) in mice after social defeat. We found that NAc MSNs have more stubby spine structures with smaller postsynaptic densities and an increase in the frequency of mEPSCs after social defeat. In parallel to these structural changes, we observed significant increases in IκB kinase (IKK) in the NAc after social defeat, a molecular pathway that has been shown to regulate neuronal morphology. Indeed, we find using viral-mediated gene transfer of dominant-negative and constitutively active IKK mutants that activation of IKK signaling pathways during social defeat is both necessary and sufficient to induce synaptic alterations and behavioral effects of the stress. These studies establish a causal role for IKK in regulating stress-induced adaptive plasticity and may present a novel target for drug development in the treatment of mood and anxiety disorders in humans.


Subject(s)
I-kappa B Kinase/metabolism , Neuronal Plasticity/physiology , Neurons/pathology , Nucleus Accumbens/pathology , Stress, Psychological/pathology , Analysis of Variance , Animals , Behavior, Animal , Dendritic Spines/metabolism , Dendritic Spines/pathology , Dendritic Spines/ultrastructure , Disease Models, Animal , Excitatory Postsynaptic Potentials/genetics , Exploratory Behavior/physiology , Gene Expression Regulation, Enzymologic/physiology , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , I-kappa B Kinase/genetics , Interpersonal Relations , Isoquinolines , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Microscopy, Electron, Transmission/methods , Mutation/genetics , Neurons/physiology , Neurons/ultrastructure , Patch-Clamp Techniques , Signal Transduction/drug effects , Signal Transduction/physiology , Statistics as Topic , Stress, Psychological/physiopathology
5.
Alcohol Clin Exp Res ; 33(11): 1924-34, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19673743

ABSTRACT

BACKGROUND: Homer proteins are constituents of scaffolding complexes that regulate the trafficking and function of central Group1 metabotropic glutamate receptors (mGluRs) and N-methyl-d-aspartate (NMDA) receptors. Research supports the involvement of these proteins in ethanol-induced neuroplasticity in mouse. In this study, we examined the effects of short versus long-term withdrawal from chronic ethanol consumption on Homer and glutamate receptor protein expression within striatal and amygdala subregions of selectively bred, alcohol-preferring P rats. METHODS: For 6 months, male P rats had concurrent access to 15% and 30% ethanol solutions under intermittent (IA: 4 d/wk) or continuous (CA: 7 d/wk) access conditions in their home cage. Rats were killed 24 hours (short withdrawal: SW) or 4 weeks (long withdrawal: LW) after termination of ethanol access, subregions of interest were micropunched and tissue processed for detection of Group1 mGluRs, NR2 subunits of the NMDA receptor and Homer protein expression. RESULTS: Within the nucleus accumbens (NAC), limited changes in NR2a and NR2b expression were detected in the shell (NACsh), whereas substantial changes were observed for Homer2a/b, mGluRs as well as NR2a and NR2b subunits in the core (NACc). Within the amygdala, no changes were detected in the basolateral subregion, whereas substantial changes, many paralleling those observed in the NACc, were detected in the central nucleus (CeA) subregion. In addition, most of the changes observed in the CeA, but not NACc, were present in both SW and LW rats. CONCLUSIONS: Overall, these subregion specific, ethanol-induced increases in mGluR/Homer2/NR2 expression within the NAC and amygdala suggest changes in glutamatergic plasticity had taken place. This may be a result of learning and subsequent memory formation of ethanol's rewarding effects in these brain structures, which may, in part, mediate the chronic relapsing nature of alcohol abuse.


Subject(s)
Amygdala/metabolism , Carrier Proteins/biosynthesis , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Nucleus Accumbens/metabolism , Receptors, Glutamate/biosynthesis , Substance Withdrawal Syndrome/psychology , Alcohol Drinking/psychology , Amygdala/drug effects , Animals , Blotting, Western , Body Weight/drug effects , Drinking/drug effects , Electrophoresis, Polyacrylamide Gel , Homer Scaffolding Proteins , Limbic System/drug effects , Limbic System/metabolism , Male , Nucleus Accumbens/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...