Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Antimicrob Agents Chemother ; 68(3): e0106923, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38289081

ABSTRACT

Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.


Subject(s)
Daptomycin , Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Daptomycin/pharmacology , Daptomycin/therapeutic use , Phylogeny , Reproducibility of Results , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/therapeutic use , Cell Membrane , Biomarkers/metabolism , Microbial Sensitivity Tests , Enterococcus faecalis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/metabolism
2.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37738153

ABSTRACT

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Prospective Studies , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
3.
Antibiotics (Basel) ; 12(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37760762

ABSTRACT

Rapid detection of Klebsiella pneumoniae carbapenemase (KPC) in the Klebsiella species is desirable. The MALDI Biotyper® MBT Subtyping Module (Bruker Daltonics) uses an algorithm that detects a peak at ~11,109 m/z corresponding to a protein encoded by the p019 gene to detect KPC simultaneously with organism identification by a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-ToF MS). Here, the subtyping module was evaluated using 795 clinical Klebsiella isolates, with whole genome sequences used to assess for blaKPC and p019. For the isolates identified as KPC positive by sequencing, the overall sensitivity of the MALDI-ToF MS subtyping module was 239/574 (42%) with 100% specificity. For the isolates harboring p019, the subtyping module showed a sensitivity of 97% (239/246) and a specificity of 100%. The subtyping module had poor sensitivity for the detection of blaKPC-positive Klebsiella isolates, albeit exhibiting excellent specificity. The poor sensitivity was a result of p019 being present in only 43% of the blaKPC-positive Klebsiella isolates.

4.
bioRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645818

ABSTRACT

Daptomycin (DAP) is often used as a first line therapy to treat vancomycin-resistant Enterococcus faecium (VR Efm ) infections but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP MICs have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ . In Enterococcus faecalis , LiaX is surface exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis , LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium . Here, we found that liaX is essential in E. faecium ( Efm ) with an activated LiaFSR system. Unlike E. faecalis , Efm LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX ELISA. We then assessed 86 clinical E. faecium BSI isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-R clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-S isolates by standard MIC determination had elevated LiaX ELISAs above the established cut-off. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many Efm isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.

5.
Microbiol Spectr ; 11(4): e0535122, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37338398

ABSTRACT

The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCCmecI) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in recent years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary health care center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000 and 2016. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r = 0.8748, P < 0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016, and an effective diversity (Hill number; q = 2) increasing from 1.12 to 2.71. The temporal trend analysis revealed that in the period 2000 to 2003 most of the isolates (94.2%; n = 98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013 to 2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCCmecII and ST72-SCCmecVI. In conclusion, the ChC clone remains the most frequent MRSA lineage, but this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCCmecII. To the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health pathogen that disseminates through the emergence of successful dominant clones in specific geographic regions. Knowledge of the dissemination and molecular epidemiology of MRSA in Latin America is scarce and is largely based on small studies or more limited typing techniques that lack the resolution to represent an accurate description of the genomic landscape. We used whole-genome sequencing to study 469 MRSA isolates collected between 2000 and 2016 in Chile providing the largest and most detailed study of clonal dynamics of MRSA in South America to date. We found a significant increase in the diversity of MRSA clones circulating over the 17-year study period. Additionally, we describe the emergence of two novel clones (ST105-SCCmecII and ST72-SCCmecVI), which have been gradually increasing in frequency over time. Our results drastically improve our understanding of the dissemination and update our knowledge about MRSA in Latin America.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Chile/epidemiology , Phylogeny , Tertiary Care Centers , Anti-Bacterial Agents
6.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37293062

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a priority pathogen listed by the World Health Organization. The global spread of MRSA is characterized by successive waves of epidemic clones that predominate in specific geographical regions. The acquisition of genes encoding resistance to heavy-metals is thought to be a key feature in the divergence and geographical spread of MRSA. Increasing evidence suggests that extreme natural events, such as earthquakes and tsunamis, could release heavy-metals into the environment. However, the impact of environmental exposition to heavy-metals on the divergence and spread of MRSA clones has been insufficiently explored. We assess the association between a major earthquake and tsunami in an industrialized port in southern Chile and MRSA clone divergence in Latin America. We performed a phylogenomic reconstruction of 113 MRSA clinical isolates from seven Latin American healthcare centers, including 25 isolates collected in a geographic area affected by an earthquake and tsunami that led to high levels of heavy-metal environmental contamination. We found a divergence event strongly associated with the presence of a plasmid harboring heavy-metal resistance genes in the isolates obtained in the area where the earthquake and tsunami occurred. Moreover, clinical isolates carrying this plasmid showed increased tolerance to mercury, arsenic, and cadmium. We also observed a physiological burden in the plasmid-carrying isolates in absence of heavy-metals. Our results are the first evidence that suggests that heavy-metal contamination, in the aftermath of an environmental disaster, appears to be a key evolutionary event for the spread and dissemination of MRSA in Latin America.

7.
Lancet Microbe ; 4(3): e159-e170, 2023 03.
Article in English | MEDLINE | ID: mdl-36774938

ABSTRACT

BACKGROUND: Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global threat, but the distribution and clinical significance of carbapenemases are unclear. The aim of this study was to define characteristics and outcomes of CRPA infections and the global frequency and clinical impact of carbapenemases harboured by CRPA. METHODS: We conducted an observational, prospective cohort study of CRPA isolated from bloodstream, respiratory, urine, or wound cultures of patients at 44 hospitals (10 countries) between Dec 1, 2018, and Nov 30, 2019. Clinical data were abstracted from health records and CRPA isolates were whole-genome sequenced. The primary outcome was 30-day mortality from the day the index culture was collected. We compared outcomes of patients with CRPA infections by infection type and across geographic regions and performed an inverse probability weighted analysis to assess the association between carbapenemase production and 30-day mortality. FINDINGS: We enrolled 972 patients (USA n=527, China n=171, south and central America n=127, Middle East n=91, Australia and Singapore n=56), of whom 581 (60%) had CRPA infections. 30-day mortality differed by infection type (bloodstream 21 [30%] of 69, respiratory 69 [19%] of 358, wound nine [14%] of 66, urine six [7%] of 88; p=0·0012) and geographical region (Middle East 15 [29%] of 52, south and central America 20 [27%] of 73, USA 60 [19%] of 308, Australia and Singapore three [11%] of 28, China seven [6%] of 120; p=0·0002). Prevalence of carbapenemase genes among CRPA isolates also varied by region (south and central America 88 [69%] of 127, Australia and Singapore 32 [57%] of 56, China 54 [32%] of 171, Middle East 27 [30%] of 91, USA ten [2%] of 527; p<0·0001). KPC-2 (n=103 [49%]) and VIM-2 (n=75 [36%]) were the most common carbapenemases in 211 carbapenemase-producing isolates. After excluding USA patients, because few US isolates had carbapenemases, patients with carbapenemase-producing CRPA infections had higher 30-day mortality than those with non-carbapenemase-producing CRPA infections in both unadjusted (26 [22%] of 120 vs 19 [12%] of 153; difference 9%, 95% CI 3-16) and adjusted (difference 7%, 95% CI 1-14) analyses. INTERPRETATION: The emergence of different carbapenemases among CRPA isolates in different geographical regions and the increased mortality associated with carbapenemase-producing CRPA infections highlight the therapeutic challenges posed by these organisms. FUNDING: National Institutes of Health.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , United States , Humans , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa/genetics , Prospective Studies , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Carbapenems/therapeutic use
8.
Front Microbiol ; 13: 1035609, 2022.
Article in English | MEDLINE | ID: mdl-36353456

ABSTRACT

Objectives: Identify molecular mechanisms responsible for the in vitro non-susceptibility to ceftolozane/tazobactam (TOL) in a group of 158 clinical isolates of Pseudomonas aeruginosa from five Latin American countries collected before the introduction of TOL into the clinical practice. Methods: Clinical isolates of P. aeruginosa (n = 504) were collected between January 2016 and October 2017 from 20 hospitals located in Argentina, Brazil, Chile, Colombia, and Mexico. Minimum inhibitory concentrations (MICs) to TOL were determined by standard broth microdilution and interpreted according to CLSI breakpoints. Initially, production of carbapenemases in TOL non-susceptible isolates was assessed by Rapidec® followed by qPCR to detect bla KPC, bla NDM-1, bla VIM, and bla IMP. Illumina® WGS was performed for isolates in which non-susceptibility to TOL was not mediated by carbapenemases. Results: A total of 158 (31.3%) isolates were non-susceptible to TOL. In 74 (46.8%) of these isolates, non-susceptibility to TOL was explained by the production of at least one carbapenemase. WGS revealed that some isolates carried ESBLs, mutated bla PDC and ampD, associated with decreased susceptibility to TOL. Conclusion: Substitutions found in PDC and carbapenemase production were the most common presumed mechanisms of resistance to TOL detected in this study. This study shows that epidemiological surveillance is warranted to monitor the emergence of novel mechanisms of resistance to TOL that might compromise its clinical utility.

9.
J Antimicrob Chemother ; 78(1): 122-132, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36322484

ABSTRACT

BACKGROUND: Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) compromise the clinical efficacy of vancomycin. The hVISA isolates spontaneously produce vancomycin-intermediate Staphylococcus aureus (VISA) cells generated by diverse and intriguing mechanisms. OBJECTIVE: To characterize the biomolecular profile of clinical hVISA applying genomic, transcriptomic and metabolomic approaches. METHODS: 39 hVISA and 305 VSSA and their genomes were included. Core genome-based Bayesian phylogenetic reconstructions were built and alterations in predicted proteins in VISA/hVISA were interrogated. Linear discriminant analysis and a Genome-Wide Association Study were performed. Differentially expressed genes were identified in hVISA-VSSA by RNA-sequencing. The undirected profiles of metabolites were determined by liquid chromatography and hydrophilic interaction in six CC5-MRSA. RESULTS: Genomic relatedness of MRSA associated to hVISA phenotype was not detected. The change Try38 → His in Atl (autolysin) was identified in 92% of the hVISA. We identified SNPs and k-mers associated to hVISA in 11 coding regions with predicted functions in virulence, transport systems, carbohydrate metabolism and tRNA synthesis. Further, capABCDE, sdrD, esaA, esaD, essA and ssaA genes were overexpressed in hVISA, while lacABCDEFG genes were downregulated. Additionally, valine, threonine, leucine tyrosine, FAD and NADH were more abundant in VSSA, while arginine, glycine and betaine were more abundant in hVISA. Finally, we observed altered metabolic pathways in hVISA, including purine and pyrimidine pathway, CoA biosynthesis, amino acid metabolism and aminoacyl tRNA biosynthesis. CONCLUSIONS: Our results show that the mechanism of hVISA involves major changes in regulatory systems, expression of virulence factors and reduction in glycolysis via TCA cycle. This work contributes to the understanding of the development of this complex resistance mechanism in regional strains.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Vancomycin/pharmacology , Staphylococcus aureus/genetics , Vancomycin-Resistant Staphylococcus aureus/genetics , Genome-Wide Association Study , Latin America , Bayes Theorem , Multiomics , Phylogeny , Vancomycin Resistance/genetics , RNA, Transfer , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
10.
PLoS One ; 17(8): e0273523, 2022.
Article in English | MEDLINE | ID: mdl-35998186

ABSTRACT

No microbiological criteria were included in the 2018 EFP-AAP classification of periodontal diseases that could be used to differentiate between stages and grades. Furthermore, differences in the subgingival microbiome depending on stage and grade have not been established. Sixty subgingival biofilm samples were collected in Spain (n = 30) and Colombia (n = 30) from three distinct patient categories: those with periodontal health/gingivitis (n = 20), those with stage I-II periodontitis (n = 20), and those with stage III-IV periodontitis (n = 20). Patients were evaluated by 16S rRNA gene amplification sequencing. Amplicon sequence variants were used to assign taxonomic categories compared to the Human Oral Microbiome Database (threshold ≥97% identity). Alpha diversity was established by Shannon and Simpson indices, and principal coordinate analysis, ANOSIM, and PERMANOVA of the UNIFRAC distances were performed using QIIME2. Although differences in the alpha diversity were observed between samples according to country, Filifactor alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Fretibacterium fastidiosum, Lachnospiraceae [G-8] bacterium HMT 500, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, Peptostreptococcus stomatis, and Tannerella forsythia were associated with periodontitis sites in all stages. However, only F. alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Peptostreptococcaceae [XI][G-9] [Eubacterium] brachy, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, and Desulfobulbus sp. HMT 041 were consistent in stage III-IV periodontitis in both countries. Porphyromonas gingivalis and Tannerella forsythia were differentially expressed in severe lesions in the countries studied. Although some non-cultivable microorganisms showed differential patterns between the different stages of periodontitis, they were not the same in the two countries evaluated. Further studies using larger samples with advanced next-generation techniques for high-throughput sequencing of phyla and non-cultivable bacteria within the subgingival microbiome could provide more insight into the differences between stages of periodontitis.


Subject(s)
Gingivitis , Microbiota , Periodontitis , Eubacterium , Humans , Microbiota/genetics , Periodontitis/microbiology , Porphyromonas gingivalis/genetics , RNA, Ribosomal, 16S/genetics
11.
J Clin Microbiol ; 60(7): e0249521, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35578988

ABSTRACT

Antistaphylococcal penicillins and cefazolin remain the primary treatments for infections with methicillin-susceptible Staphylococcus aureus (MSSA). The cefazolin inoculum effect (CzIE) causes the cefazolin MIC to be elevated in proportion to the number of bacteria in the inoculum. The objective of this multicenter study was to evaluate the prevalence of the CzIE in North American MSSA isolates. Clinical MSSA isolates from six microbiology laboratories in the United States and one microbiology laboratory in Canada were screened for the CzIE by broth microdilution at a standard inoculum (~5 × 105 CFU/mL) and a high inoculum (~5 × 107 CFU/mL). Genome sequencing was performed to further characterize the MSSA isolates. The CzIE was present in 57/305 (18.6%) MSSA isolates, ranging from 0% to 27.9% across study sites. More of the CzIE-positive isolates (29.8%) had standard inoculum cefazolin MICs of 1.0 µg/mL than the CzIE-negative isolates did (3.2%) (P < 0.0001). Conversely, more CzIE-negative isolates (39.5%) had standard inoculum MICs of 0.25 µg/mL than the CzIE positive isolates did (5.3%) (P < 0.0001). The most common BlaZ ß-lactamase types found in the CzIE-positive strains were type C (53.7%) and type A (44.4%). ST8 and ST30 were the most common sequence types among CzIE-positive isolates and correlated with BlaZ type C and A, respectively. The CzIE was present in up to a quarter of clinical MSSA isolates from North American clinical laboratories. Further studies to determine the impact of the presence of the CzIE on clinical outcomes are needed.


Subject(s)
Bacteremia , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/microbiology , Cefazolin/pharmacology , Humans , Methicillin , North America , Prevalence , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics
12.
Lancet Infect Dis ; 22(3): 401-412, 2022 03.
Article in English | MEDLINE | ID: mdl-34767753

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global threat. We therefore analysed the bacterial characteristics of CRKP infections and the clinical outcomes of patients with CRKP infections across different countries. METHODS: In this prospective, multicentre, cohort study (CRACKLE-2), hospitalised patients with cultures positive for CRKP were recruited from 71 hospitals in Argentina, Australia, Chile, China, Colombia, Lebanon, Singapore, and the USA. The first culture positive for CRKP was included for each unique patient. Clinical data on post-hospitalisation death and readmission were collected from health records, and whole genome sequencing was done on all isolates. The primary outcome was a desirability of outcome ranking at 30 days after the index culture, and, along with bacterial characteristics and 30-day all-cause mortality (a key secondary outcome), was compared between patients from China, South America, and the USA. The desirability of outcome ranking was adjusted for location before admission, Charlson comorbidity index, age at culture, Pitt bacteremia score, and anatomical culture source through inverse probability weighting; mortality was adjusted for the same confounders, plus region where relevant, through multivariable logistic regression. This study is registered at ClinicalTrials.gov, NCT03646227, and is complete. FINDINGS: Between June 13, 2017, and Nov 30, 2018, 991 patients were enrolled, of whom 502 (51%) met the criteria for CRKP infection and 489 (49%) had positive cultures that were considered colonisation. We observed little intra-country genetic variation in CRKP. Infected patients from the USA were more acutely ill than were patients from China or South America (median Pitt bacteremia score 3 [IQR 2-6] vs 2 [0-4] vs 2 [0-4]) and had more comorbidities (median Charlson comorbidity index 3 [IQR 2-5] vs 1 [0-3] vs 1 [0-2]). Adjusted desirability of outcome ranking outcomes were similar in infected patients from China (n=246), South America (n=109), and the USA (n=130); the estimates were 53% (95% CI 42-65) for China versus South America, 50% (41-61) for the USA versus China, and 53% (41-66) for the USA versus South America. In patients with CRKP infections, unadjusted 30-day mortality was lower in China (12%, 95% CI 8-16; 29 of 246) than in the USA (23%, 16-30; 30 of 130) and South America (28%, 20-37; 31 of 109). Adjusted 30-day all-cause mortality was higher in South America than in China (adjusted odds ratio [aOR] 4·82, 95% CI 2·22-10·50) and the USA (aOR 3·34, 1·50-7·47), with the mortality difference between the USA and China no longer being significant (aOR 1·44, 0·70-2·96). INTERPRETATION: Global CRKP epidemics have important regional differences in patients' baseline characteristics and clinical outcomes, and in bacterial characteristics. Research findings from one region might not be generalisable to other regions. FUNDING: The National Institutes of Health.


Subject(s)
Bacteremia , Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Carbapenems , Cohort Studies , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Prospective Studies , Respiratory Sounds
13.
JAC Antimicrob Resist ; 3(2): dlab035, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34223110

ABSTRACT

ESBLs are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that pose a therapeutic challenge today in hospital- and community-acquired infections. Thirty-six years after the first report, diagnostic and therapeutic approaches for ESBLs are still the subject of controversy. Detection of these enzymes is recommended for epidemiological purposes and facilitates targeted therapy, necessary for antimicrobial stewardship. On the other hand, ESBLs are not confined to specific species, phenotypic detection methods have pitfalls, and concerns exist about the accuracy of antimicrobial susceptibility testing systems to rely on MIC values for cephalosporins and ß-lactam combination agents. In this issue, we present a PRO/CON debate on ESBL testing for ceftriaxone-non-susceptible Enterobacterales.

14.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-33536292

ABSTRACT

The cefazolin inoculum effect (CzIE) has been associated with therapeutic failures and mortality in invasive methicillin-susceptible Staphylococcus aureus (MSSA) infections. A diagnostic test to detect the CzIE is not currently available. We developed a rapid (∼3 h) CzIE colorimetric test to detect staphylococcal-ß-lactamase (BlaZ) activity in supernatants after ampicillin induction. The test was validated using 689 bloodstream MSSA isolates recovered from Latin America and the United States. The cefazolin MIC determination at a high inoculum (107 CFU/ml) was used as a reference standard (cutoff ≥16 µg/ml). All isolates underwent genome sequencing. A total of 257 (37.3%) of MSSA isolates exhibited the CzIE by the reference standard method. The overall sensitivity and specificity of the colorimetric test was 82.5% and 88.9%, respectively. Sensitivity in MSSA isolates harboring type A BlaZ (the most efficient enzyme against cefazolin) was 92.7% with a specificity of 87.8%. The performance of the test was lower against type B and C enzymes (sensitivities of 53.3% and 72.3%, respectively). When the reference value was set to ≥32 µg/ml, the sensitivity for isolates carrying type A enzymes was 98.2%. Specificity was 100% for MSSA lacking blaZ The overall negative predictive value ranged from 81.4% to 95.6% in Latin American countries using published prevalence rates of the CzIE. MSSA isolates from the United States were genetically diverse, with no distinguishing genomic differences from Latin American MSSA, distributed among 18 sequence types. A novel test can readily identify most MSSA isolates exhibiting the CzIE, particularly those carrying type A BlaZ. In contrast to the MIC determination using high inoculum, the rapid test is inexpensive, feasible, and easy to perform. After minor validation steps, it could be incorporated into the routine clinical laboratory workflow.


Subject(s)
Cefazolin , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefazolin/pharmacology , Diagnostic Tests, Routine , Humans , Latin America , Methicillin , Microbial Sensitivity Tests , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics
15.
Am J Trop Med Hyg ; 103(5): 1838-1840, 2020 11.
Article in English | MEDLINE | ID: mdl-32748772

ABSTRACT

Burkholderia pseudomallei is an emerging pathogen in the Americas. Cases of mother-to-child transmission of B. pseudomallei are rare and probably occur by placental or perinatal infection. We report the first case of native gestational and neonatal melioidosis in the Western hemisphere. The isolated strains in the mother and newborn were confirmed by whole-genome sequencing and identified as a novel sequence type ST1748. The comparison of both genomes revealed a nucleotide similarity of 100%. Melioidosis should be considered within the differential diagnosis of febrile illness or pneumonia in pregnant women and newborns from endemic areas of the Americas.


Subject(s)
Infectious Disease Transmission, Vertical , Melioidosis/diagnosis , Melioidosis/transmission , Anti-Bacterial Agents , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Colombia/epidemiology , Female , Genome, Bacterial , Humans , Infant, Newborn , Melioidosis/drug therapy , Melioidosis/epidemiology , Pregnancy , Young Adult
16.
Open Forum Infect Dis ; 7(5): ofaa159, 2020 May.
Article in English | MEDLINE | ID: mdl-32494583

ABSTRACT

We report a case of soft tissue infection, sepsis, and bacteremia due to Burkholderia pseudomallei (melioidosis) in a diabetic young patient and the genomic characterization of Burkholderia pseudomallei isolate (COL-5428).

17.
J Antimicrob Chemother ; 75(9): 2424-2431, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32562543

ABSTRACT

BACKGROUND: Vancomycin is a common first-line option for MRSA infections. The heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) phenotype is associated with therapeutic failure. However, hVISA isolates are usually reported as vancomycin susceptible by routine susceptibility testing procedures. OBJECTIVES: To detect and characterize the hVISA phenotype in MRSA isolates causing infections in nine Latin American countries. METHODS: We evaluated a total of 1189 vancomycin-susceptible MRSA isolates recovered during 2006-08 and 2011-14. After an initial screening of hVISA using glycopeptide-supplemented agar strategies, the detection of hVISA was performed by Etest (GRD) and Macro-method (MET). Isolates deemed to be hVISA were subjected to population analysis profile/AUC (PAP/AUC) and WGS for further characterization. Finally, we interrogated alterations in predicted proteins associated with the development of the VISA phenotype in both hVISA and vancomycin-susceptible S. aureus (VSSA) genomes. RESULTS: A total of 39 MRSA isolates (3.3%) were classified as hVISA (1.4% and 5.6% in MRSA recovered from 2006-08 and 2011-14, respectively). Most of the hVISA strains (95%) belonged to clonal complex (CC) 5. Only 6/39 hVISA isolates were categorized as hVISA by PAP/AUC, with 6 other isolates close (0.87-0.89) to the cut-off (0.9). The majority of the 39 hVISA isolates exhibited the Leu-14→Ile (90%) and VraT Glu-156→Gly (90%) amino acid substitutions in WalK. Additionally, we identified 10 substitutions present only in hVISA isolates, involving WalK, VraS, RpoB and RpoC proteins. CONCLUSIONS: The hVISA phenotype exhibits low frequency in Latin America. Amino acid substitutions in proteins involved in cell envelope homeostasis and RNA synthesis were commonly identified. Our results suggest that Etest-based methods are an important alternative for the detection of hVISA clinical isolates.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Latin America/epidemiology , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Vancomycin/pharmacology
18.
Sci Rep ; 10(1): 5636, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221315

ABSTRACT

Little is known about the population structure of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America (LATAM). Here, we provide a complete genomic characterization of 55 representative Latin American VREfm recovered from 1998-2015 in 5 countries. The LATAM VREfm population is structured into two main clinical clades without geographical clustering. Using the LATAM genomes, we reconstructed the global population of VREfm by including 285 genomes from 36 countries spanning from 1946 to 2017. In contrast to previous studies, our results show an early branching of animal related isolates and a further split of clinical isolates into two sub-clades within clade A. The overall phylogenomic structure of clade A was highly dependent on recombination (54% of the genome) and the split between clades A and B was estimated to have occurred more than 2,765 years ago. Furthermore, our molecular clock calculations suggest the branching of animal isolates and clinical clades occurred ~502 years ago whereas the split within the clinical clade occurred ~302 years ago (previous studies showed a more recent split between clinical an animal branches around ~74 years ago). By including isolates from Latin America, we present novel insights into the population structure of VREfm and revisit the evolution of these pathogens.


Subject(s)
Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Vancomycin-Resistant Enterococci/genetics , Vancomycin/pharmacology , Anti-Bacterial Agents , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/microbiology , Disease Outbreaks , Genomics/methods , Genotype , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests/methods , Molecular Epidemiology/methods , Phylogeny , Vancomycin-Resistant Enterococci/drug effects
19.
Article in English | MEDLINE | ID: mdl-32071048

ABSTRACT

Cefazolin has become a prominent therapy for methicillin-susceptible Staphylococcus aureus (MSSA) infections. However, an important concern is the cefazolin inoculum effect (CzIE), a phenomenon mediated by staphylococcal ß-lactamases. Four variants of staphylococcal ß-lactamases have been described based on serological methodologies and limited sequence information. Here, we sought to reassess the classification of staphylococcal ß-lactamases and their correlation with the CzIE. We included a large collection of 690 contemporary bloodstream MSSA isolates recovered from Latin America, a region with a high prevalence of the CzIE. We determined cefazolin MICs at standard and high inoculums by broth microdilution. Whole-genome sequencing was performed to classify the ß-lactamase in each isolate based on the predicted full sequence of BlaZ. We used the classical schemes for ß-lactamase classification and compared it to BlaZ allotypes found in unique sequences using the genomic information. Phylogenetic analyses were performed based on the BlaZ and core-genome sequences. The overall prevalence of the CzIE was 40%. Among 641 genomes, type C was the most predominant ß-lactamase (37%), followed by type A (33%). We found 29 allotypes and 43 different substitutions in BlaZ. A single allotype, designated BlaZ-2, showed a robust and statistically significant association with the CzIE. Two other allotypes (BlaZ-3 and BlaZ-5) were associated with a lack of the CzIE. Three amino acid substitutions (A9V, E112A, and G145E) showed statistically significant association with the CzIE (P = <0.01). CC30 was the predominant clone among isolates displaying the CzIE. Thus, we provide a novel approach to the classification of the staphylococcal ß-lactamases with the potential to more accurately identify MSSA strains exhibiting the CzIE.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cefazolin/pharmacology , Drug Resistance, Bacterial/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , beta-Lactamases/classification , Bacteremia/epidemiology , Bacteremia/microbiology , Humans , Latin America/epidemiology , Microbial Sensitivity Tests , Molecular Epidemiology , Phylogeny , Prevalence , Staphylococcal Infections/epidemiology , Staphylococcus aureus/enzymology , Whole Genome Sequencing , beta-Lactamases/genetics
20.
Proc Natl Acad Sci U S A ; 116(52): 26925-26932, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31818937

ABSTRACT

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...