Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 146: 396-404, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26741544

ABSTRACT

The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells.


Subject(s)
Baccharis , Environmental Pollutants/toxicity , Metals, Heavy/toxicity , Mutagens/toxicity , Plant Extracts/toxicity , Animals , Brazil , Chromatography, High Pressure Liquid , Coal , Comet Assay , Environmental Pollutants/analysis , Female , Liver/drug effects , Male , Metals, Heavy/analysis , Mice , Micronucleus Tests , Mutagens/analysis , Plant Extracts/chemistry , Salmonella/drug effects , Salmonella/genetics
2.
Mutat Res Genet Toxicol Environ Mutagen ; 758(1-2): 23-8, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24004879

ABSTRACT

Coal is an important fossil fuel used to generate energy. Coal dust is constituted primarily of hydrocarbons and metals. During coal extraction, large quantities of coal dust particles are emitted, contributing to environmental pollution. Coal miners are constantly exposed to coal dust and its derivatives. The goal of this study was to evaluate the potential genotoxic effects of coal and oxidative stress in individuals from Candiota who were exposed to coal as part of their occupation. The comet assay and micronucleus (MN) test were used to assess these effects. This study involved 128 male participants of whom 71 reported work that included exposure to coal (exposed group) and 57 reported working at different jobs (unexposed group). The exposed group had a significantly increased damage index and damage frequency, as assessed using the comet assay, and increased MN and nucleoplasmic bridge frequencies, as assessed using the MN assay, compared with unexposed individuals. Significant and positive correlations between MN frequencies in the lymphocytes and buccal cells of control and exposed individuals were observed. The exposed individuals presented lower average levels of thiobarbituric acid reactive substances (TBARS) and catalase activity (CAT), while the mean superoxide dismutase activity (SOD) levels were higher in this group. The exposed group also had higher hematocrit levels. No correlation between DNA damage and inorganic elements, as identified using PIXE, was found; however, there was a correlation between the damage index and zinc. The evidence that exposure to coal and its derivatives presents a genetic hazard demonstrates the need for protective measures and educational programs for coal miners.


Subject(s)
Coal , Lymphocytes/drug effects , Occupational Exposure , Oxidative Stress , Coal Mining , Comet Assay , Humans , Lymphocytes/metabolism , Male
3.
Mutat Res ; 744(2): 140-4, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22331007

ABSTRACT

Nicotine has been reported to cause acute toxicity and to present long-term risks, such as chromosomal damage and genetic instability. The genotoxicity of nicotine may be mediated partly by an oxidative mechanism. We have evaluated the effects of the antioxidant vitamin C on nicotine-induced genotoxicity in mice. The comet assay and the micronucleus test were used to assess the effects of nicotine (15mg/kg) at different exposure times (2, 4, and 24h in the comet assay; 24h in the micronucleus test). Pretreatment with vitamin C 24h before nicotine exposure strongly protected mice against nicotine-induced DNA damage.


Subject(s)
Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Nicotine/toxicity , Animals , Comet Assay , DNA Damage/drug effects , Female , Humans , Male , Mice , Micronucleus Tests , Nicotine/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL