Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 57(6): 2839-49, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27233032

ABSTRACT

PURPOSE: Cataract surgery requires the removal of a circular segment of the anterior lens capsule (LC) by manual or femtosecond laser (FL) capsulotomy. Tears in the remaining anterior LC may compromise surgical outcome. We investigated whether biophysical differences in the rim properties of the LC remaining in the patient after manual or FL capsulotomy (FLC) lead to different risks with regard to anterior tear formation. METHODS: Lens capsule samples obtained by either continuous curvilinear capsulorhexis (CCC) or FLC were investigated by light microscopy, laser scanning confocal microscopy, and scanning electron microscopy; atomic force microscopy (AFM) was used to test the biomechanical properties of the LC. The mechanical stability of the LC following either of the two capsulotomy techniques was simulated by using finite-element modeling. RESULTS: Continuous curvilinear capsulorhexis produced wedge-shaped, uniform rims, while FLC resulted in nearly perpendicular, frayed rims with numerous notches. The LC is composed of two sublayers: a stiff epithelial layer that is abundant with laminin and a softer anterior chamber layer that is predominantly made from collagen IV. Computer models show that stress is uniformly distributed over the entire rim after CCC, while focal high stress concentrations are observed in the frayed profiles of LC after FLC, making the latter procedure more prone to anterior tear formation. CONCLUSIONS: Finite-element modeling based on three-dimensional AFM maps indicated that CCC leads to a capsulotomy rim with higher stress resistance, leading to a lower propensity for anterior radial tears than FLC.


Subject(s)
Anterior Capsule of the Lens/ultrastructure , Capsulorhexis/methods , Laser Therapy/methods , Adolescent , Adult , Aged , Aged, 80 and over , Anterior Capsule of the Lens/physiopathology , Anterior Capsule of the Lens/surgery , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Male , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron, Scanning , Middle Aged , Young Adult
2.
FEBS J ; 282(23): 4466-79, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26299746

ABSTRACT

Basement membranes (BMs) are thin sheets of extracellular matrix that outline epithelia, muscle fibers, blood vessels and peripheral nerves. The current view of BM structure and functions is based mainly on transmission electron microscopy imaging, in vitro protein binding assays, and phenotype analysis of human patients, mutant mice and invertebrata. Recently, MS-based protein analysis, biomechanical testing and cell adhesion assays with in vivo derived BMs have led to new and unexpected insights. Proteomic analysis combined with ultrastructural studies showed that many BMs undergo compositional and structural changes with advancing age. Atomic force microscopy measurements in combination with phenotype analysis have revealed an altered mechanical stiffness that correlates with specific BM pathologies in mutant mice and human patients. Atomic force microscopy-based height measurements strongly suggest that BMs are more than two-fold thicker than previously estimated, providing greater freedom for modelling the large protein polymers within BMs. In addition, data gathered using BMs extracted from mutant mice showed that laminin has a crucial role in BM stability. Finally, recent evidence demonstrate that BMs are bi-functionally organized, leading to the proposition that BM-sidedness contributes to the alternating epithelial and stromal tissue arrangements that are found in all metazoan species. We propose that BMs are ancient structures with tissue-organizing functions and were essential in the evolution of metazoan species.


Subject(s)
Basement Membrane/chemistry , Basement Membrane/metabolism , Animals , Basement Membrane/ultrastructure , Humans , Microscopy, Atomic Force , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...