Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
J Org Chem ; 88(17): 12709-12715, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37596972

ABSTRACT

Macrocycles fascinate chemists due to both their structure and their applications. However, we still lack efficient and sustainable synthetic methods, giving us straightforward access to them. Herein, a rapid macrocyclization utilizing a two-step, one-pot approach based on orthogonal multicomponent reaction (MCR) tactics is introduced. This synthetic protocol, which is based on Ugi and Groebke-Blackburn-Bienaymé reactions with isocyanides tethered to alkyl tosylates, yields medium sized macrocycles that are otherwise difficult to achieve. Single crystal structures reveal conformational reorganization via intramolecular hydrogen bonding, and modeling studies profile the synthesized libraries.

3.
4.
Green Chem ; 25(4): 1380-1394, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36824604

ABSTRACT

Screening of large and diverse libraries is the 'bread and butter' in the first phase of the discovery of novel drugs. However, maintenance and periodic renewal of high-quality large compound collections pose considerable logistic, environmental and monetary problems. Here, we exercise an alternative, the 'on-the-fly' synthesis of large and diverse libraries on a nanoscale in a highly automated fashion. For the first time, we show the feasibility of the synthesis of a large library based on 16 different chemistries in parallel on several 384-well plates using the acoustic dispensing ejection (ADE) technology platform. In contrast to combinatorial chemistry, we produced 16 scaffolds at the same time and in a sparse matrix fashion, and each compound was produced by a random combination of diverse large building blocks. The synthesis, analytics, resynthesis of selected compounds, and chemoinformatic analysis of the library are described. The advantages of the herein described automated nanoscale synthesis approach include great library diversity, absence of library storage logistics, superior economics, speed of synthesis by automation, increased safety, and hence sustainable chemistry.

5.
Molecules ; 27(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500376

ABSTRACT

By binding to the spliceosomal protein Snu66, the human ubiquitin-like protein Hub1 is a modulator of the spliceosome performance and facilitates alternative splicing. Small molecules that bind to Hub1 would be of interest to study the protein-protein interaction of Hub1/Snu66, which is linked to several human pathologies, such as hypercholesterolemia, premature aging, neurodegenerative diseases, and cancer. To identify small molecule ligands for Hub1, we used the interface analysis, peptide modeling of the Hub1/Snu66 interaction and the fragment-based NMR screening. Fragment-based NMR screening has not proven sufficient to unambiguously search for fragments that bind to the Hub1 protein. This was because the Snu66 binding pocket of Hub1 is occupied by pH-sensitive residues, making it difficult to distinguish between pH-induced NMR shifts and actual binding events. The NMR analyses were therefore verified experimentally by microscale thermophoresis and by NMR pH titration experiments. Our study found two small peptides that showed binding to Hub1. These peptides are the first small-molecule ligands reported to interact with the Hub1 protein.


Subject(s)
Alternative Splicing , Spliceosomes , Humans , Spliceosomes/metabolism , Ubiquitins/genetics , Magnetic Resonance Spectroscopy , Computers , Protein Binding , Ligands , Binding Sites
6.
ACS Med Chem Lett ; 13(9): 1468-1471, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36105327

ABSTRACT

IL-17a is a major inflammation target, with several approved antibodies in clinical use. Small-molecule IL-17a antagonists are an emerging hot topic, with the recent advancement of three compounds into clinical trials. Here, we describe the design, discovery, synthesis, and screening of macrocyclic compounds that bind to IL-17a. We found that all currently described IL-17a modifiers belong to the same pharmacophore model, likely resulting in a similar receptor binding mode on IL-17a. A pipeline of pharmacophore analysis, virtual screening, resynthesis, and protein biophysics resulted in a potent IL-17a macrocyclic modifier.

7.
Commun Biol ; 4(1): 949, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376783

ABSTRACT

Malate dehydrogenases (MDHs) sustain tumor growth and carbon metabolism by pathogens including Plasmodium falciparum. However, clinical success of MDH inhibitors is absent, as current small molecule approaches targeting the active site are unselective. The presence of an allosteric binding site at oligomeric interface allows the development of more specific inhibitors. To this end we performed a differential NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface. Subsequent biophysical and biochemical experiments of an identified fragment indicate an allosteric mechanism of 4-(3,4-difluorophenyl) thiazol-2-amine (4DT) inhibition by impacting the formation of the active site loop, located >30 Å from the 4DT binding site. Further characterization of the more tractable homolog 4-phenylthiazol-2-amine (4PA) and 16 other derivatives are also reported. These data pave the way for downstream development of more selective molecules by utilizing the oligomeric interfaces showing higher species sequence divergence than the MDH active site.


Subject(s)
Malate Dehydrogenase/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Binding Sites , Catalytic Domain , Malate Dehydrogenase/chemistry , Models, Molecular , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry
9.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810348

ABSTRACT

CD44 promotes metastasis, chemoresistance, and stemness in different types of cancer and is a target for the development of new anti-cancer therapies. All CD44 isoforms share a common N-terminal domain that binds to hyaluronic acid (HA). Herein, we used a computational approach to design new potential CD44 antagonists and evaluate their target-binding ability. By analyzing 30 crystal structures of the HA-binding domain (CD44HAbd), we characterized a subdomain that binds to 1,2,3,4-tetrahydroisoquinoline (THQ)-containing compounds and is adjacent to residues essential for HA interaction. By computational combinatorial chemistry (CCC), we designed 168,190 molecules and compared their conformers to a pharmacophore containing the key features of the crystallographic THQ binding mode. Approximately 0.01% of the compounds matched the pharmacophore and were analyzed by computational docking and molecular dynamics (MD). We identified two compounds, Can125 and Can159, that bound to human CD44HAbd (hCD44HAbd) in explicit-solvent MD simulations and therefore may elicit CD44 blockage. These compounds can be easily synthesized by multicomponent reactions for activity testing and their binding mode, reported here, could be helpful in the design of more potent CD44 antagonists.


Subject(s)
Drug Design , Drug Discovery , Hyaluronan Receptors , Molecular Dynamics Simulation , Tetrahydroisoquinolines , Animals , Binding Sites , Humans , Hyaluronan Receptors/antagonists & inhibitors , Hyaluronan Receptors/chemistry , Hyaluronic Acid/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Binding , Tetrahydroisoquinolines/chemistry
10.
J Chem Inf Model ; 60(12): 6298-6313, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33270455

ABSTRACT

Macrocycles target proteins that are otherwise considered undruggable because of a lack of hydrophobic cavities and the presence of extended featureless surfaces. Increasing efforts by computational chemists have developed effective software to overcome the restrictions of torsional and conformational freedom that arise as a consequence of macrocyclization. Moloc is an efficient algorithm, with an emphasis on high interactivity, and has been constantly updated since 1986 by drug designers and crystallographers of the Roche biostructural community. In this work, we have benchmarked the shape-guided algorithm using a dataset of 208 macrocycles, carefully selected on the basis of structural complexity. We have quantified the accuracy, diversity, speed, exhaustiveness, and sampling efficiency in an automated fashion and we compared them with four commercial (Prime, MacroModel, molecular operating environment, and molecular dynamics) and four open-access (experimental-torsion distance geometry with additional "basic knowledge" alone and with Merck molecular force field minimization or universal force field minimization, Cambridge Crystallographic Data Centre conformer generator, and conformator) packages. With three-quarters of the database processed below the threshold of high ring accuracy, Moloc was identified as having the highest sampling efficiency and exhaustiveness without producing thousands of conformations, random ring splitting into two half-loops, and possibility to interactively produce globular or flat conformations with diversity similar to Prime, MacroModel, and molecular dynamics. The algorithm and the Python scripts for full automatization of these parameters are freely available for academic use.


Subject(s)
Benchmarking , Macrocyclic Compounds , Molecular Conformation , Molecular Dynamics Simulation , Software
11.
J Med Chem ; 59(19): 9140-9149, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27592503

ABSTRACT

The synthesis, the enantiomeric separation, and the characterization of new simple spiroketal derivatives have been performed. The synthesized compounds have shown a very high anticancer activity. Cell proliferation assay showed that they induce a remarkable inhibition of cell proliferation in all cell lines treated, depending on culture time and concentration. The compounds have also shown a potent nanomolar human telomerase inhibition activity and apoptosis induction. CD melting experiments demonstrate that spiroketal does not affect the G-quadruplex (G4) thermal stability. Docking studies showed that telomerase inhibition could be determined by a spiroketal interaction with the telomerase enzyme.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Furans/chemistry , Furans/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Telomerase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Furans/chemical synthesis , G-Quadruplexes/drug effects , Humans , Models, Molecular , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Spiro Compounds/chemical synthesis , Stereoisomerism , Structure-Activity Relationship , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...