Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 114(4): 923-33, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23163356

ABSTRACT

A significant number of bacterial strains are able to use toxic aromatic hydrocarbons as carbon and energy sources. In a number of cases, the evolution of the corresponding degradation pathway was accompanied by the evolution of tactic behaviours either towards or away from these toxic carbon sources. Reports are reviewed which show that a chemoattraction to heterogeneously distributed aromatic pollutants increases the bioavailability of these compounds and their biodegradation efficiency. An extreme form of chemoattraction towards aromatic pollutants, termed 'hyperchemotaxis', was described for Pseudomonas putida DOT-T1E, which is based on the action of the plasmid-encoded McpT chemoreceptor. Cells with this phenotype were found of being able to approach and of establishing contact with undiluted crude oil samples. Although close McpT homologues are found on other degradation plasmids, the sequence of their ligand-binding domains does not share significant similarity with that of NahY, the other characterized chemoreceptor for aromatic hydrocarbons. This may suggest the existence of at least two families of chemoreceptors for aromatic pollutants. The use of receptor chimers comprising the ligand-binding region of McpT for biosensing purposes is discussed.


Subject(s)
Chemotaxis , Environmental Pollutants/metabolism , Hydrocarbons, Aromatic/metabolism , Pseudomonas putida/physiology , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biosensing Techniques , Petroleum/metabolism , Phenotype , Plasmids , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...