Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 30(8): 1555-1566, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37910044

ABSTRACT

PURPOSE: Chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies are effective in a subset of patients with solid tumors, but new approaches are needed to universally improve patient outcomes. Here, we developed a technology to leverage the cooperative effects of IL15 and IL21, two common cytokine-receptor gamma chain family members with distinct, pleiotropic effects on T cells and other lymphocytes, to enhance the efficacy of adoptive T cells. EXPERIMENTAL DESIGN: We designed vectors that induce the constitutive expression of either membrane-tethered IL15, IL21, or IL15/IL21. We used clinically relevant preclinical models of transgenic CARs and TCRs against pediatric and adult solid tumors to determine the effect of the membrane-tethered cytokines on engineered T cells for human administration. RESULTS: We found that self-delivery of these cytokines by CAR or TCR T cells prevents functional exhaustion by repeated stimulation and limits the emergence of dysfunctional natural killer (NK)-like T cells. Across different preclinical murine solid tumor models, we observed enhanced regression with each individual cytokine but the greatest antitumor efficacy when T cells were armored with both. CONCLUSIONS: The coexpression of membrane-tethered IL15 and IL21 represents a technology to enhance the resilience and function of engineered T cells against solid tumors and could be applicable to multiple therapy platforms and diseases. See related commentary by Ruffin et al., p. 1431.


Subject(s)
Interleukins , Neoplasms , Receptors, Chimeric Antigen , Adult , Humans , Mice , Animals , Child , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-15/genetics , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Neoplasms/genetics , Neoplasms/therapy , Cytokines/metabolism
2.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36631162

ABSTRACT

BACKGROUND: Although most patients with newly diagnosed high-risk neuroblastoma (NB) achieve remission after initial therapy, more than 50% experience late relapses caused by minimal residual disease (MRD) and succumb to their cancer. Therapeutic strategies to target MRD may benefit these children. We developed a new chimeric antigen receptor (CAR) targeting glypican-2 (GPC2) and conducted iterative preclinical engineering of the CAR structure to maximize its anti-tumor efficacy before clinical translation. METHODS: We evaluated different GPC2-CAR constructs by measuring the CAR activity in vitro. NOD-SCID mice engrafted orthotopically with human NB cell lines or patient-derived xenografts and treated with human CAR T cells served as in vivo models. Mechanistic studies were performed using single-cell RNA-sequencing. RESULTS: Applying stringent in vitro assays and orthotopic in vivo NB models, we demonstrated that our single-chain variable fragment, CT3, integrated into a CAR vector with a CD28 hinge, CD28 transmembrane, and 4-1BB co-stimulatory domain (CT3.28H.BBζ) elicits the best preclinical anti-NB activity compared with other tested CAR constructs. This enhanced activity was associated with an enrichment of CD8+ effector T cells in the tumor-microenvironment and upregulation of several effector molecules such as GNLY, GZMB, ZNF683, and HMGN2. Finally, we also showed that the CT3.28H.BBζ CAR we developed was more potent than a recently clinically tested GD2-targeted CAR to control NB growth in vivo. CONCLUSION: Given the robust preclinical activity of CT3.28H.BBζ, these results form a promising basis for further clinical testing in children with NB.


Subject(s)
Glypicans , Neuroblastoma , Receptors, Chimeric Antigen , Animals , Child , Humans , Mice , CD28 Antigens , Gangliosides , Glypicans/immunology , Glypicans/therapeutic use , Immunotherapy, Adoptive/methods , Mice, Inbred NOD , Mice, SCID , Neuroblastoma/metabolism , Neuroblastoma/therapy , Receptors, Chimeric Antigen/genetics
3.
Front Oncol ; 11: 601512, 2021.
Article in English | MEDLINE | ID: mdl-33718147

ABSTRACT

Ovarian cancer is the deadliest of gynecological malignancies with approximately 49% of women surviving 5 years after initial diagnosis. The standard of care for ovarian cancer consists of cytoreductive surgery followed by platinum-based combination chemotherapy. Unfortunately, despite initial response, platinum resistance remains a major clinical challenge. Therefore, the identification of effective biomarkers and therapeutic targets is crucial to guide therapy regimen, maximize clinical benefit, and improve patient outcome. Given the pivotal role of c-MYC deregulation in most tumor types, including ovarian cancer, assessment of c-MYC biological and clinical relevance is essential. Here, we briefly describe the frequency of c-MYC deregulation in ovarian cancer and the consequences of its targeting.

4.
Cancers (Basel) ; 12(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260415

ABSTRACT

Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.

5.
Front Oncol ; 10: 602670, 2020.
Article in English | MEDLINE | ID: mdl-33392094

ABSTRACT

Cumulating evidence indicates that dysregulation of microRNAs (miRNAs) plays a central role in the initiation, progression, and drug resistance of cancer cells. However, the specific miRNAs contributing to drug resistance in ovarian cancer cells have not been fully elucidated. Aimed to identify potential miRNAs involved in platinum resistance, we performed a miRNA expression profile in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells, and we found several differentially abundant miRNAs in the pair of cell lines. Notably, miR-18a-5p (miR-18a), a member of the oncogenic associated miR-17-92 cluster, was decreased in cisplatin-resistant as compared with cisplatin-sensitive cells. Real-time PCR analysis confirmed these findings. We then studied the biological, molecular, and therapeutic consequences of increasing the miR-18a levels with oligonucleotide microRNA mimics (OMM). Compared with a negative control OMM, transient transfection of a miR-18a-OMM reduced cell growth, cell proliferation, and cell invasion. Intraperitoneal injections of miR-18a-OMM-loaded folate-conjugated liposomes significantly reduced the tumor weight and the number of nodules in ovarian cancer-bearing mice when compared with a control-OMM group. Survival analysis using the Kaplan-Meier plotter database showed that ovarian cancer patients with high miR-18a levels live longer in comparison to patients with lower miR-18a levels. Bioinformatic analyses, real-time-PCR, Western blots, and luciferase reporter assays revealed that Matrix Metalloproteinase-3 (MMP-3) is a direct target of miR-18a. Small-interfering RNA (siRNA)-mediated silencing of MMP-3 reduced cell viability, cell growth, and the invasiveness potential of cisplatin-resistant ovarian cancer cells. Our study suggests that targeting miR-18a is a plausible therapeutic strategy for cisplatin-resistant ovarian cancer.

6.
Mol Cancer Ther ; 14(10): 2260-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26227489

ABSTRACT

The purpose of this study was to investigate the molecular and therapeutic effects of siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer. Statistical analysis of patient's data extracted from The Cancer Genome Atlas (TCGA) portal showed that the disease-free (DFS) and the overall (OS) survival were decreased in ovarian cancer patients with high c-MYC mRNA levels. Furthermore, analysis of a panel of ovarian cancer cell lines showed that c-MYC protein levels were higher in cisplatin-resistant cells when compared with their cisplatin-sensitive counterparts. In vitro cell viability, growth, cell-cycle progression, and apoptosis, as well as in vivo therapeutic effectiveness in murine xenograft models, were also assessed following siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer cells. Significant inhibition of cell growth and viability, cell-cycle arrest, and activation of apoptosis were observed upon siRNA-mediated c-MYC depletion. In addition, single weekly doses of c-MYC-siRNA incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000)-based nanoliposomes resulted in significant reduction in tumor growth. These findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-myc/genetics , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Disease-Free Survival , Drug Resistance, Neoplasm , Female , Gene Expression , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Mice, Nude , Ovarian Neoplasms/mortality , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...