Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 16(7): e1900175, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31095891

ABSTRACT

Several species from the Apocynaceae family, such as Tabernanthe iboga, Voacanga africana, and many Tabernaemontana species, produce ibogan type alkaloids, some of which present antiaddictive properties. In this study, we used gas chromatography/mass spectrometry (GC/MS) to examine the efficiency of methanol, acetone, ethyl acetate, dichloromethane, chloroform, and hydrochloric acid in extracting the antiaddictive compounds coronaridine, ibogamine, voacangine, and ibogaine (altogether the CIVI-complex) from the root barks of Tabernaemontana alba and Tabernaemontana arborea. These Mexican species have recently shown great potential as alternative natural sources of the aforementioned substances. Methanol proved to be the most suitable solvent. Furthermore, the crude methanolic extracts could be engaged in a one-step demethoxycarbonylation process that converted coronaridine and voacangine directly into its non-carboxylic counterparts ibogamine and ibogaine, respectively, without the intermediacy of their carboxylic acids. The established protocol straightforwardly simplifies the alkaloid mixture from four to two majority compounds. In summary, our findings facilitate and improve both the qualitative and quantitative analysis of CIVI-complex-containing plant material, as well as outlining a viable method for the bulk production of these scientifically and pharmaceutically important substances from Mexican Tabernaemontana species.


Subject(s)
Bridged-Ring Compounds/isolation & purification , Ibogaine/analogs & derivatives , Ibogaine/isolation & purification , Tabernaemontana/chemistry , Bridged-Ring Compounds/chemistry , Ibogaine/chemistry , Mexico , Molecular Conformation , Plant Bark/chemistry , Plant Roots/chemistry , Species Specificity
2.
Inorg Chem ; 52(12): 6934-43, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23718324

ABSTRACT

The synthesis and stabilization of alumo- and gallodisilicates [HC{C(Me)N(2,6-iPr2C6H3)}2]M[(µ-O)Si(OH)(OtBu)2]2 [M = Al (1), Ga (2)] containing two silicate subunits have been achieved through reactions between 2 equiv of the silanediol (tBuO)2Si(OH)2 and the aluminum hydride [HC{C(Me)N(2,6-iPr2C6H3)}2]AlH2 or the gallium amide [HC{C(Me)N(2,6-iPr2C6H3)}2]Ga(NHEt)2, respectively. Compounds 1 and 2 exhibit M(O-SiO2-OH)2 moiety and represent the first molecular metallosilicate-based analogues of neighboring silanol groups found in silicate surfaces. The substitution of both SiOH groups led to the formation of bimetallic compounds with 4R topologies, which are regularly found in zeolitic materials. Thus, reactions between group 4 metal amides M'(NEt2)4 (M' = Ti, Zr, Hf) and 1 and 2 resulted in the formation of nine heterometallic silicates (3-11) containing inorganic M(O-Si-O)2M' and [M(O-Si-O)2]2M' cores with 4R and spiro-4R topologies, respectively. The latter have M···M distances of 0.81 nm. NMR studies of the heterometallic derivatives showed a fluxional behavior at room temperature due to a high flexibility of the eight-membered ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...