Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Neurosci ; 22(3): 65, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37258450

ABSTRACT

Depression is the leading cause of disability worldwide, contributing to the global disease burden. From above, it is a priority to investigate models that fully explain its physiopathology to develop new treatments. In the last decade, many studies have shown that gut microbiota (GM) dysbiosis influences brain functions and participate, in association with immunity, in the pathogenesis of depression. Thereby, GM modulation could be a novel therapeutic target for depression. This review aims to evidence how the GM and the immune system influence mental illness, particularly depression. Here, we focus on the communication mechanisms between the intestine and the brain and the impact on the development of neuroinflammation contributing to the development of Major Depressive Disorder (MDD). However, most of the current findings are in animal models, suggesting the need for studies in humans. In addition, more analysis of metabolites and cytokines are needed to identify new pathophysiological mechanisms improving anti-depression treatments.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Animals , Humans , Depressive Disorder, Major/therapy , Brain-Gut Axis , Neuroinflammatory Diseases , Brain
2.
Int J Cancer ; 145(11): 3126-3139, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31407335

ABSTRACT

Inflammation is currently considered a hallmark of cancer and plays a decisive role in different stages of tumorigenesis, including initiation, promotion, progression, metastasis and resistance to antitumor therapies. Colorectal cancer is a disease widely associated with local chronic inflammation. Additionally, extrinsic factors such as infection may beneficially or detrimentally alter cancer progression. Several reports have noted the ability of various parasitic infections to modulate cancer development, favoring tumor progression in many cases and inhibiting tumorigenesis in others. The aim of our study was to determine the effects of excreted/secreted products of the helminth Taenia crassiceps (TcES) as a treatment in a murine model of colitis-associated colon cancer (CAC). Here, we found that after inducing CAC, treatment with TcES was able to reduce inflammatory cytokines such as IL-1ß, TNF-α, IL-33 and IL-17 and significantly attenuate colon tumorigenesis. This effect was associated with the inhibition of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation. Furthermore, we determined that TcES interfered with LPS-induced NF-κB p65 activation in human colonic epithelial cell lines in a Raf-1 proto-oncogene-dependent manner. Moreover, in three-dimensional cultures, TcES promoted reorganization of the actin cytoskeleton, altering cell morphology and forming colonospheres, features associated with a low grade of aggressiveness. Our study demonstrates a remarkable effect of helminth-derived molecules on suppressing ongoing colorectal cancer by downregulating proinflammatory and protumorigenic signaling pathways.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Azoxymethane/adverse effects , Colitis/drug therapy , Colonic Neoplasms/drug therapy , Helminth Proteins/administration & dosage , Taenia/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colitis/chemically induced , Colitis/complications , Colonic Neoplasms/etiology , Disease Models, Animal , Female , Helminth Proteins/pharmacology , Humans , Interleukin-1beta/metabolism , Interleukin-33/metabolism , Mice , NF-kappa B/metabolism , Phosphorylation , Proto-Oncogene Mas , STAT3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...