Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1852(3): 421-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25500153

ABSTRACT

Ischemic stroke is an acute vascular event that compromises neuronal viability, and identification of the pathophysiological mechanisms is critical for its correct management. Ischemia produces increased nitric oxide synthesis to recover blood flow but also induces a free radical burst. Nitric oxide and superoxide anion react to generate peroxynitrite that nitrates tyrosines. We found that fibrinogen nitrotyrosination was detected in plasma after the initiation of ischemic stroke in human patients. Electron microscopy and protein intrinsic fluorescence showed that in vitro nitrotyrosination of fibrinogen affected its structure. Thromboelastography showed that initially fibrinogen nitrotyrosination retarded clot formation but later made the clot more resistant to fibrinolysis. This result was independent of any effect on thrombin production. Immunofluorescence analysis of affected human brain areas also showed that both fibrinogen and nitrotyrosinated fibrinogen spread into the brain parenchyma after ischemic stroke. Therefore, we assayed the toxicity of fibrinogen and nitrotyrosinated fibrinogen in a human neuroblastoma cell line. For that purpose we measured the activity of caspase-3, a key enzyme in the apoptotic pathway, and cell survival. We found that nitrotyrosinated fibrinogen induced higher activation of caspase 3. Accordingly, cell survival assays showed a more neurotoxic effect of nitrotyrosinated fibrinogen at all concentrations tested. In summary, nitrotyrosinated fibrinogen would be of pathophysiological interest in ischemic stroke due to both its impact on hemostasis - it impairs thrombolysis, the main target in stroke treatments - and its neurotoxicity that would contribute to the death of the brain tissue surrounding the infarcted area.


Subject(s)
Apoptosis , Brain Ischemia/metabolism , Brain/metabolism , Fibrinogen/metabolism , Fibrinolysis , Neurons/metabolism , Stroke/metabolism , Adult , Aged , Aged, 80 and over , Animals , Brain/pathology , Brain Ischemia/pathology , Caspase 3/metabolism , Cell Line, Tumor , Enzyme Activation , Female , Humans , Male , Middle Aged , Neurons/pathology , Rats , Rats, Sprague-Dawley , Stroke/pathology , Tyrosine/analogs & derivatives , Tyrosine/metabolism
2.
Oxid Med Cell Longev ; 2013: 826143, 2013.
Article in English | MEDLINE | ID: mdl-23983901

ABSTRACT

Ischemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO) to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines. The present study measured NO production in a human neuroblastoma (SH-SY5Y), a murine glial (BV2), a human endothelial cell line (HUVEC), and in primary cultures of human cerebral myocytes (HC-VSMCs) after experimental ischemia in vitro. Neuronal, endothelial, and inducible NO synthase (NOS) expression was also studied up to 24 h after ischemia, showing a different time course depending on the NOS type and the cells studied. Finally, we carried out cell viability experiments on SH-SY5Y cells with H2O2, a prooxidant agent, and with a NO donor to mimic ischemic conditions. We found that both compounds were highly toxic when they interacted, producing peroxynitrite. We obtained similar results when all cells were challenged with peroxynitrite. Our data suggest that peroxynitrite induces cell death and is a very harmful agent in brain ischemia.


Subject(s)
Oxidative Stress/drug effects , Proteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrogen Peroxide/pharmacology , Mice , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Tyrosine/analogs & derivatives , Tyrosine/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...